Lecture 30: Conclusion

Brian Hou
August 11, 2016
Announcements
Announcements

• Final Exam tomorrow (8/12) from 5–8pm in 155 Dwinelle
Announcements

- Final Exam tomorrow (8/12) from 5–8pm in 155 Dwinelle
- Last part of AutoStyle EC study is due today
Announcements

- Final Exam tomorrow (8/12) from 5–8pm in 155 Dwinelle
- Last part of AutoStyle EC study is due today
- Homework 12 out later today, due Saturday 8/13
Announcements

• Final Exam tomorrow (8/12) from 5–8pm in 155 Dwinelle
• Last part of AutoStyle EC study is due today
• Homework 12 out later today, due Saturday 8/13
 • End-of-semester survey, one more extra credit point!
Scheme Recursive Art Contest

http://art.cs61a.org/
Scheme Recursive Art Contest
Scheme Recursive Art Contest

- Congratulations to everyone who participated in this semester's Scheme Recursive Art Contest!
Congratulations to everyone who participated in this semester's Scheme Recursive Art Contest!

Thank you to everyone who helped us decide the winners!
Featherweight (Third Place)
Featherweight (Third Place)
Featherweight (Third Place)

Mandelbrot Fractration!!
Peilin Lu
13.1% of votes
Featherweight (Second Place)
Featherweight (Second Place)
Featherweight (Second Place)

Tail-recursive Gyarados
Leo Adberg and Amir Shahatit
13.4% of votes
Featherweight (First Place)
Featherweight (First Place)
Featherweight (First Place)

Staring Eye
Renhua Liu
14.4% of votes
Heavyweight (Third Place)
Heavyweight (Third Place)
Heavyweight (Third Place)

Vigil for The Person Who Got -5 Points in CS61A
Xiaocheng Yang and Zeyana Musthafa
14.1% of votes
Heavyweight (Second Place)
Heavyweight (Second Place)
Heavyweight (Second Place)

EE/CS Master Trainers
Alex Bondarenko
28.4% of votes
Heavyweight (First Place)
Heavyweight (First Place)
Heavyweight (First Place)

Origin of Life
Yi Xu and Jianhui Li
30.0% of votes
Congratulations!
What is CS 61A?
CS 61A in one slide
CS 61A in one slide

• High-level ideas in computer science:
CS 61A in one slide

- High-level ideas in computer science:
 - *Abstraction*: manage complexity by hiding the details
CS 61A in one slide

- High-level ideas in computer science:
 - Abstraction: manage complexity by hiding the details
 - Paradigms: utilize different approaches to programming
CS 61A in one slide

- High-level ideas in computer science:
 - *Abstraction*: manage complexity by hiding the details
 - *Paradigms*: utilize different approaches to programming
• High-level ideas in computer science:
 - *Abstraction*: manage complexity by hiding the details
 - *Paradigms*: utilize different approaches to programming
High-level ideas in computer science:

- **Abstraction**: manage complexity by hiding the details
- **Paradigms**: utilize different approaches to programming

Master these ideas through implementation:
CS 61A in one slide

• High-level ideas in computer science:
 • Abstraction: manage complexity by hiding the details
 • Paradigms: utilize different approaches to programming

• Master these ideas through implementation:
 • Learn the Python programming language (& others)
CS 61A in one slide

- High-level ideas in computer science:
 - *Abstraction*: manage complexity by hiding the details
 - *Paradigms*: utilize different approaches to programming

- Master these ideas through implementation:
 - Learn the Python programming language (& others)
 - Complete large programming assignments
CS 61A in one slide

- High-level ideas in computer science:
 - Abstraction: manage complexity by hiding the details
 - Paradigms: utilize different approaches to programming

- Master these ideas through implementation:
 - Learn the Python programming language (& others)
 - Complete large programming assignments

- A challenging course that will demand a lot from you
Roadmap

- Introduction
- Functions
- Data
- Mutability
- Objects
- Interpretation
- Paradigms
- Applications
This week (Introduction), the goals are:
This week (Introduction), the goals are:

- To learn the fundamentals of programming
This week (Introduction), the goals are:

- To learn the fundamentals of programming
- To become comfortable with Python
This week (Functions), the goals are:
This week (Functions), the goals are:

- To understand the idea of functional abstraction
This week (Functions), the goals are:

- To understand the idea of functional abstraction
- To study this idea through:
Roadmap

- Introduction
- Functions
- Data
- Mutability
- Objects
- Interpretation
- Paradigms
- Applications

This week (Functions), the goals are:
- To understand the idea of functional abstraction
- To study this idea through:
 - higher-order functions
This week (Functions), the goals are:

- To understand the idea of *functional abstraction*
- To study this idea through:
 - higher-order functions
 - recursion
• This week (Functions), the goals are:
 • To understand the idea of *functional abstraction*
 • To study this idea through:
 • higher-order functions
 • recursion
 • orders of growth
Roadmap

- Introduction
- Functions
- Data
- Mutability
- Objects
- Interpretation
- Paradigms
- Applications
• This week (Data), the goals are:
This week (Data), the goals are:

- To continue our journey through abstraction with *data abstraction*
This week (Data), the goals are:

- To continue our journey through abstraction with \textit{data abstraction}
- To study useful data types we can construct with data abstraction
Roadmap

Introduction
Functions
Data
Mutability
Objects
Interpretation
Paradigms
Applications
This short week (Mutability), the goals are:
• This short week (Mutability), the goals are:
 • To explore the power of values that can *mutate*, or change
Roadmap

- Introduction
- Functions
- Data
- Mutability
- Objects
- Interpretation
- Paradigms
- Applications
• This week (Objects), the goals are:
This week (Objects), the goals are:

- To learn the paradigm of object-oriented programming
This week (Objects), the goals are:

- To learn the paradigm of *object-oriented programming*
- To study applications of, and problems that be solved using, OOP
Roadmap

Introduction
Functions
Data
Mutability
Objects
Interpretation
Paradigms
Applications
This week (Interpretation), the goals are:
This week (Interpretation), the goals are:

- To learn a new language, Scheme, in two days!
This week (Interpretation), the goals are:

- To learn a new language, Scheme, in two days!
- To understand how interpreters work, using Scheme as an example
This week (Paradigms), the goals are:
Roadmap

Introduction
Functions
Data
Mutability
Objects
Interpretation
Paradigms
Applications

• This week (Paradigms), the goals are:
 • To study examples of paradigms that are very different from what we have seen so far
Roadmap

Introduction
Functions
Data
Mutability
Objects
Interpretation
Paradigms
Applications

• This week (Paradigms), the goals are:
 • To study examples of paradigms that are very different from what we have seen so far
 • To expand our definition of what counts as programming
This week (Applications), the goals are:
This week (Applications), the goals are:
- To go beyond CS 61A and see examples of what comes next
This week (Applications), the goals are:

- To go beyond CS 61A and see examples of what comes next
- To wrap up CS 61A!
Life After CS 61A
Classes at Berkeley
Classes at Berkeley

• What you learn is much more important than your grade!
Classes at Berkeley

• What you learn is much more important than your grade!
• CS 61B (Data Structures and Algorithms)
Classes at Berkeley

• What you learn is much more important than your grade!
• CS 61B (Data Structures and Algorithms)
 • Taught by Professor Paul Hilfinger in Fall 2016
Classes at Berkeley

• What you learn is much more important than your grade!
• CS 61B (Data Structures and Algorithms)
 • Taught by Professor Paul Hilfinger in Fall 2016
• Data Science 8 (Foundations of Data Science)
Classes at Berkeley

- What you learn is much more important than your grade!
- CS 61B (Data Structures and Algorithms)
 - Taught by Professor Paul Hilfinger in Fall 2016
- Data Science 8 (Foundations of Data Science)
 - Taught by Professor Ani Adhikari in Fall 2016
Classes at Berkeley

• What you learn is much more important than your grade!
• CS 61B (Data Structures and Algorithms)
 • Taught by Professor Paul Hilfinger in Fall 2016
• Data Science 8 (Foundations of Data Science)
 • Taught by Professor Ani Adhikari in Fall 2016
• Other EECS lower division courses:
Classes at Berkeley

• What you learn is much more important than your grade!
• CS 61B (Data Structures and Algorithms)
 • Taught by Professor Paul Hilfinger in Fall 2016
• Data Science 8 (Foundations of Data Science)
 • Taught by Professor Ani Adhikari in Fall 2016
• Other EECS lower division courses:
 • CS 70 (Discrete Mathematics and Probability Theory)
Classes at Berkeley

• What you learn is much more important than your grade!
• CS 61B (Data Structures and Algorithms)
 • Taught by Professor Paul Hilfinger in Fall 2016
• Data Science 8 (Foundations of Data Science)
 • Taught by Professor Ani Adhikari in Fall 2016
• Other EECS lower division courses:
 • CS 70 (Discrete Mathematics and Probability Theory)
 • CS 61C (Machine Structures)
Classes at Berkeley

- What you learn is much more important than your grade!
- CS 61B (Data Structures and Algorithms)
 - Taught by Professor Paul Hilfinger in Fall 2016
- Data Science 8 (Foundations of Data Science)
 - Taught by Professor Ani Adhikari in Fall 2016
- Other EECS lower division courses:
 - CS 70 (Discrete Mathematics and Probability Theory)
 - CS 61C (Machine Structures)
 - EE 16A/16B (Designing Information Devices and Systems)
Classes at Berkeley

- What you learn is much more important than your grade!
- CS 61B (Data Structures and Algorithms)
 - Taught by Professor Paul Hilfinger in Fall 2016
- Data Science 8 (Foundations of Data Science)
 - Taught by Professor Ani Adhikari in Fall 2016
- Other EECS lower division courses:
 - CS 70 (Discrete Mathematics and Probability Theory)
 - CS 61C (Machine Structures)
 - EE 16A/16B (Designing Information Devices and Systems)
- EECS upper division courses
Life Outside the Classroom
Life Outside the Classroom

- Program for fun! Build things that you think are cool
Life Outside the Classroom

• Program for fun! Build things that you think are cool
 • Hackathons are a great place for this to happen
Life Outside the Classroom

• Program for fun! Build things that you think are cool
 • Hackathons are a great place for this to happen
• Try an internship or join a research project
Life Outside the Classroom

- Program for fun! Build things that you think are cool
 - Hackathons are a great place for this to happen
- Try an internship or join a research project
- Don't forget to do things that aren't CS-related!
Lab Assisting
Lab Assisting

• The best way to give back to the CS community
Lab Assisting

- The best way to give back to the CS community
- Anyone who passes the course can be a lab assistant
Lab Assisting

• The best way to give back to the CS community
• Anyone who passes the course can be a lab assistant
• Develop greater mastery of course concepts
Lab Assisting

- The best way to give back to the CS community
- Anyone who passes the course can be a lab assistant
- Develop greater mastery of course concepts
- Learn to describe technical concepts (great preparation for technical interviews!)
Lab Assisting

• The best way to give back to the CS community
• Anyone who passes the course can be a lab assistant
• Develop greater mastery of course concepts
• Learn to describe technical concepts (great preparation for technical interviews!)
• The first step to joining the course staff as a tutor or teaching assistant
Lab Assisting

- The best way to give back to the CS community
- Anyone who passes the course can be a lab assistant
- Develop greater mastery of course concepts
- Learn to describe technical concepts (great preparation for technical interviews!)
- The first step to joining the course staff as a tutor or teaching assistant

https://piazza.com/class/ipkfex1ne3p56y?cid=1682
Thank you!