Object Oriented Programming

Computer Science 61A

July 19, 2016

1 Object Oriented Programming

On Monday, you were introduced to the programming paradigm known as Object-Oriented Programming (OOP). OOP allows us to treat data as objects - like we do in real life.

For example, consider the class CS61A_Student. Each of you as individuals are an instance of this class. So, a student Mitas would be an instance of the class CS61A_Student.

Details that all CS61A students have, such as name, year, and major, are called instance attributes. Every student has these attributes, but their values differ from student to student. An attribute that is shared among all instances of CS61A_Student is known as a class attribute. An example would be the instructors attribute; the instructor for 61A, Professor LeBron, is the same for every student in CS61A. However, the TA attribute isn’t shared among all students since students will not necessarily have the same TA, so that would be an instance attribute.

All students are able to do homework, attend lecture, and go to office hours. When functions belong to a specific object, they are said to be methods. In this case, these actions would be bound methods of CS61A_Student objects.

Here is a recap of what we discussed above:

- **class**: a template for creating objects
- **instance**: a single object created from a class
- **instance attribute**: a property of an object, specific to an instance
- **class attribute**: a property of an object, shared by all instances of the same class
- **method**: an action (function) that all instances of a class may perform
1. Below we have defined the classes Instructor, Student, and TeachingAssistant, implementing some of what was described above. Remember that we pass the self argument implicitly to instance methods when using dot-notation.

class Instructor:
 degree = "PhD (Basketball)" # this is a class attribute
 def __init__(self, name):
 self.name = name # this is an instance attribute

 def lecture(self, topic):
 print("Today we're learning about " + topic)

lebron = Instructor("Professor LeBron")
class Student:
 instructor = lebron

 def __init__(self, name, ta):
 self.name = name
 self.understanding = 0
 ta.add_student(self)

 def attend_lecture(self, topic):
 Student.instructor.lecture(topic)
 print(Student.instructor.name + " is awesome!")
 self.understanding += 1

 def visit_office_hours(self, staff):
 staff.assist(self)
 print("Thanks, " + staff.name)

class TeachingAssistant:
 def __init__(self, name):
 self.name = name
 self.students = {}

 def add_student(self, student):
 self.students[student.name] = student

 def assist(self, student):
 student.understanding += 1
What will the following lines output?

```python
>>> steph = TeachingAssistant("Steph")
>>> kyrie = Student("Kyrie", steph)
>>> kyrie.attend_lecture("defense")

>>> melo = Student("Carmelo", steph)
>>> melo.attend_lecture("championships")

>>> melo.visit_office_hours(TeachingAssistant("Dwyane"))

>>> kyrie.understanding

>>> steph.students["Carmelo"].understanding

>>> Student.instructor = Instructor("Professor Kobe")
>>> Student.attend_lecture(melo, "game winners")
# Equivalent to melo.attend_lecture("game winners")
```
2. We now want to write three different classes, Postman, Client, and Email to simulate email. Fill in the definitions below to finish the implementation!

```python
class Email:
    """Every email object has 3 instance attributes: the message, the sender (their name), and the addressee (the destination's name)."
    """
    def __init__(self, msg, sender, addressee):

class Postman:
    """Each Postman has an instance attribute clients, which is a dictionary that associates client names with client objects."
    """
    def __init__(self):
        self.clients = {}

    def send(self, email):
        """Take an email and put it in the inbox of the client it is addressed to."
        """

    def register_client(self, client, client_name):
        """Takes a client object and client_name and adds it to the clients instance attribute."
        """
```
class Client:
 """Every Client has instance attributes name (which is
used for addressing emails to the client), mailman
(which is used to send emails out to other clients), and
inbox (a list of all emails the client has received).
""
 def __init__(self, mailman, name):
 self.inbox = []

 def compose(self, msg, recipient):
 """Send an email with the given message msg to the
given recipient.
""

 def receive(self, email):
 """Take an email and add it to the inbox of this
client.
"""
Let's explore another powerful object-oriented programming tool: inheritance. Suppose we want to write `Dog` and `Cat` classes. Here's our first attempt:

```python
class Dog(object):
    def __init__(self, name, owner, color):
        self.name = name
        self.owner = owner
        self.color = color
    def eat(self, thing):
        print(self.name + " ate a " + str(thing) + ")")
    def talk(self):
        print(self.name + " says woof!")

class Cat(object):
    def __init__(self, name, owner, lives=9):
        self.name = name
        self.owner = owner
        self.lives = lives
    def eat(self, thing):
        print(self.name + " ate a " + str(thing) + ")")
    def talk(self):
        print(self.name + " says meow!")
```

Notice that the only difference between both the `Dog` and `Cat` classes are the `talk` method as well as the `color` and `lives` attributes. That's a lot of repeated code!

This is where inheritance comes in. In Python, a class can inherit the instance variables and methods of another class without having to type them all out again. For example:

```python
class Foo(object):
    # This is the base class

class Bar(Foo):
    # This is the subclass
```

`Bar` inherits from `Foo`. We call `Foo` the base class (the class that is being inherited) and `Bar` the subclass (the class that does the inheriting).

Notice that `Foo` also inherits from the `object` class. In Python, `object` is the top-level base class that provides basic functionality; everything inherits from it, even when you don’t specify a class to inherit from. One common use of inheritance is to represent a hierarchical relationship between two or more classes where one class is a more specific version of the other class. For example, a dog is a pet.
class Pet(object):
 def __init__(self, name, owner):
 self.is_alive = True # It's alive!!
 self.name = name
 self.owner = owner
 def eat(self, thing):
 print(self.name + " ate a " + str(thing) + "!")
 def talk(self):
 print(self.name)

class Dog(Pet):
 def __init__(self, name, owner, color):
 Pet.__init__(self, name, owner)
 self.color = color
 def talk(self):
 print(self.name + ' says woof!')

By making Dog a subclass of Pet, we did not have to redefine self.name, self.owner, or eat. However, since we want Dog to talk differently, we did redefine, or override, the talk method.

The line Pet.__init__(self, name, owner) in the Dog class is necessary for inheriting the instance attributes and methods from Pet. Notice that when we call Pet.__init__, we need to pass in self as a regular argument (that is, inside the parentheses, rather than by dot-notation) since Pet is a class, not an instance.
2.1 Questions

1. Implement the `Cat` class by inheriting from the `Pet` class. Make sure to use superclass methods wherever possible. In addition, add a `lose_life` method to the `Cat` class.

```python
class Cat(Pet):
    def __init__(self, name, owner, lives=9):
        # Your code here

    def talk(self):
        """A cat says meow! when asked to talk.""

    def lose_life(self):
        """A cat can only lose a life if they have at least one life. When lives reaches zero, 'is_alive' becomes False."
```

2. More cats! Fill in the methods for `NoisyCat`, which is just like a normal `Cat`. However, `NoisyCat` talks a lot, printing twice whatever a `Cat` says.

```python
class NoisyCat(Cat):
    """A Cat that repeats things twice.""

    def __init__(self, name, owner, lives=9):
        # Is this method necessary? Why or why not?

    def talk(self):
        """Repeat what a Cat says twice.""
```
3. What would Python print? (Summer 2013 Final)

```python
class A:
    def f(self):
        return 2
    def g(self, obj, x):
        if x == 0:
            return A.f(obj)
        return obj.f() + self.g(self, x - 1)

class B(A):
    def f(self):
        return 4

>>> x, y = A(), B()
>>> x.f()

>>> B.f()

>>> x.g(x, 1)

>>> y.g(x, 2)
```

4. Implement the Yolo class so that the following interpreter session works as expected. (Summer 2013 Final)

```python
>>> x = Yolo(1)
>>> x.g(3)
4
>>> x.g(5)
6
>>> x.motto = 5
>>> x.g(5)
10
```