
CS 61A Structure and Interpretation of Computer Programs
Summer 2017 Final Solutions

• You have 2 hours and 50 minutes to complete this exam.

• This exam is closed book, closed notes, closed computer, closed calculator, except four 8.5” × 11” cheat sheets.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

• For multiple choice questions, fill in each option or choice completely.

– 2 means mark all options that apply

– # means mark a single choice

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

Teaching Assistant

Alex Stennet

Angela Kwon

Ashley Chien

Joyce Luong

Karthik Bharathala

Kavi Gupta

Kelly Chen

Michael Gibbes

Michelle Hwang

Mitas Ray

Rocky Duan

Samantha Wong

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

0. (1 points) Determination What makes you strong?

http://berkeley.edu

2

1. (12 points) We’re all the same to them . . .

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”, but
include all output displayed before the error. If a function value is displayed, write “Function”. If an iterator or
generator value would be displayed, write “Iterator” (instead of something like <iterator object at 0x...>).

Recall: The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have started python3 and executed the following statements:

def tee(iterable):
it = iter(iterable)
queues = [[], []]
def gen(lst):

while True:
if not lst:

try:
value = next(it)

except StopIteration:
return

for q in queues:
q.append(value)

yield lst.pop(0)
return [gen(queues[0]), gen(queues[1])]

yum = ['avocado', 'quinoa', 'cream cheese']

>>> print(yum[0] + ' ' + yum[-1]) * 5

avocado cream cheese
Error

>>> print(print(next(iter(yum))), next(yum))

avocado
Error

>>> next(iter(next(iter(yum))))

'a'

>>> eat = iter(tee(yum))
>>> neat = next(eat)
>>> next(neat)

'avocado'

>>> yum[0] = yum.pop()
>>> yum.append(next(neat))
>>> yum[:2]

['cream cheese', 'quinoa']

>>> next(neat)

'quinoa'

>>> munch = next(iter(tee(yum)))
>>> next(munch) + ' ' + next(next(eat))

'cream cheese avocado'

Name: 3

2. (8 points) Winter is coming.

class Link:
"""A linked list."""

empty = ()

def __init__(self, first, rest=empty):
self.first = first
self.rest = rest

(a) (2 pt) Implement nest, which takes in a linked list s and returns a new linked list as shown below.

def nest(s):

if s is Link.empty:

return Link.empty

return Link(s, nest(s.rest))

s = Link(1, Link(2, Link(3)))

cs = nest(s)

1 2 3

(b) (6 pt) Clearly draw the final box-and-pointer diagram for each of the two calls to mystery.

def mystery(a, b):
if isinstance(a.first, Link):

mystery(a.first, b)
if a.rest is Link.empty:

a.rest = b
else:

mystery(a.rest, b)

x = Link(1, Link(2, Link(3)))
mystery(x, x)

x −→
1 2 3

y = Link(Link(1, Link(2, Link(3))), Link(4, Link(Link(5, Link(Link(6, Link(7)), Link(8))))))
mystery(y, y)

y −→

1 2 3

4

6 7

5 8

4

3. (10 points) You know nothing, Jon Snow.

(a) On the next page, fill in the environment diagram that results
from executing the code below until the entire program is finished,
an error occurs, or all frames are filled.

You may not need to use all of the spaces or frames.

(b) Then, for each Field below, fill in the corresponding bubble or
fig. if referring to a drawn figure such as a list. Leave a row blank
if the space in the environment diagram should be left blank.

To receive credit, you must list your bindings in the order in which
they are first bound in the frame.

f1 TITLE

BINDINGS

RETURN VALUE

PARENT

NAME VALUE

Field Names Values

f1

Binding 1 f # 0 # 1 # True # False # α # β # γ δ # fig.

Binding 2 hits # 0 # 1 # True # False # α # β γ # δ # fig.

Binding 3 cache # 0 # 1 # True # False # α # β # γ # δ fig.

Binding 4 run # 0 # 1 # True # False # α β # γ # δ # fig.

Return # 0 # 1 # True # False # α β # γ # δ # fig.

f2

Title # cache run # hits # lambda

Binding 1 # f # hits # cache # run x # y # 0 1 # True # False # α # β # γ # δ # fig.

Binding 2 # f # hits # cache # run # x y # 0 # 1 # True # False α # β # γ # δ # fig.

Binding 3 # f # hits # cache # run # x # y # 0 # 1 # True # False # α # β # γ # δ # fig.

Binding 4 # f # hits # cache # run # x # y # 0 # 1 # True # False # α # β # γ # δ # fig.

Return # 0 1 # True # False # α # β # γ # δ # fig.

f3

Title # cache # run # hits lambda

Binding 1 # f # hits # cache # run x # y # 0 1 # True # False # α # β # γ # δ # fig.

Binding 2 # f # hits # cache # run # x # y # 0 # 1 # True # False # α # β # γ # δ # fig.

Binding 3 # f # hits # cache # run # x # y # 0 # 1 # True # False # α # β # γ # δ # fig.

Binding 4 # f # hits # cache # run # x # y # 0 # 1 # True # False # α # β # γ # δ # fig.

Return # 0 # 1 # True # False α # β # γ # δ # fig.

f4

Title # cache # run hits # lambda

Binding 1 # f hits # cache # run # x # y # 0 # 1 # True # False # α # β γ # δ # fig.

Binding 2 # f # hits cache # run # x # y # 0 # 1 # True # False # α # β # γ # δ fig.

Binding 3 # f # hits # cache # run # x # y # 0 # 1 # True # False # α # β # γ # δ # fig.

Binding 4 # f # hits # cache # run # x # y # 0 # 1 # True # False # α # β # γ # δ # fig.

Return # 0 # 1 # True # False # α # β # γ # δ fig.

Name: 5

Remember to draw figures in the designated box and fill out the choices to receive credit.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

• Use box-and-pointer notation for lists. You don’t need to write index numbers or the word “list”.

• Include all figures or diagrams of objects (such as lists) in the designated box.

def cache(f):
 hits = 0
 cache = [hits]
 def run(x):
 nonlocal hits, cache
 def hits(hits):
 if hits:
 cache = []
 else:
 cache = [not hits]
 return cache
 y = f(x)
 hits(hits).append([x, y])
 return x or y
 return run

cache(lambda x: cache)(1)

 func cache(f) [parent=Global]
Global frame

cache

All figures must go in above box

 func run(x) [parent= f1]

 func hits(hits) [parent= f2]

 func lambda(x) [parent=Global]

f1 cache [parent=Global]

run

cache

hits

f

Return Value

f2 run [parent= f1]

Return Value

f3 lambda [parent=Global]

Return Value

f4 hits [parent= f2]

Return Value

0

1

x

y

1

1

x 1

cache

hits

α

β

γ

δ

6

4. (6 points) The things I do for love.

(a) (4 pt) What are the first 7 elements of my_stream()? Fill in the blanks below.

from operator import add, mul

class Stream:
"""A lazily computed linked list."""
empty = 'empty'

def __init__(self, first, compute_rest=lambda: Stream.empty):
"""A stream with a first element and a rest that is a stream-returning parameterless
function compute_rest."""

@property
def rest(self):

"""Return the rest, computing it if necessary."""

def make_integer_stream(first):
"""Return an infinite stream of integers counting up from first."""

def map_stream(f, s):
"""Return a new stream that is the result of applying f on every element in s."""

def filter_stream(f, s):
"""Return a new stream containing only the elements of s where f applied to the element
returns True."""

def combine_streams(f, a, b):
"""Return a new stream that is the result of applying f on the values in a and b such
that the output is f(a1, b1), f(a2, b2), ..."""

def my_stream():
return filter_stream(lambda x: x % 2 == 1,

Stream(1, lambda: Stream(2, lambda: Stream(3, lambda: Stream(4, lambda: Stream(5,
lambda: combine_streams(add, my_stream().rest,

combine_streams(mul, my_stream(),
map_stream(lambda x: 2 * x, make_integer_stream(1))))))))))

1 , 3 , 5 , 5 , 17 , 35 , 57

(b) (2 pt) Implement pairwise, a generator function which takes in an infinite stream s and yields the next
sliding pair of elements from s. Evaluate as lazily as possible; do not compute the rest until it is needed.

def pairwise(s):

pair = [None, s.first]

while True:

s = s.rest

pair = pair[1:] + [s.first]

yield pair

>>> s = make_integer_stream(1)
>>> pairs = pairwise(s)
>>> for _ in range(3):
... print(next(pairs))
[1, 2]
[2, 3]
[3, 4]
>>> s.rest.rest
Stream(3, Stream(4, <...>))

Name: 7

5. (3 points) When you play the game of thrones, you win or you die.

Implement prune_tree which takes in a Tree t and an integer total and mutates t so that the sum of each
root-to-leaf path is at most total. Assume values are positive numbers and t.root ≤ total.

class Tree:
"""A mutable tree data type containing a root value and a list of branches."""

def __init__(self, root, branches=[]):
self.root = root
self.branches = list(branches)

def is_leaf(self):
return not self.branches

def prune_tree(t, total):
"""Destructively prune the tree t so that the sum of each path from root-to-leaf is less
than or equal to total. All values are positive numbers and t.root <= total.

>>> t1 = Tree(1, [Tree(2, [Tree(2, [Tree(1)]),
Tree(3),
Tree(4)]),

Tree(3, [Tree(2), Tree(1, [Tree(5), Tree(1)])]),
Tree(6, [Tree(2)])])

>>> prune_tree(t1, 6)
>>> print_tree(t1)
1
2
2

1
3

3
2
1
1

"""

t.branches = [b for b in t.branches if t.root + b.root <= total]

for b in t.branches:

prune_tree(b, total - t.root)

1

3

1

5

62

2 3 4

1

2

1

2

1

3

1

2

2 3

11

2
prune_tree

6. (0 points) Designated Exam Fun Zone

Draw something. Leave a scent on the paper. It is up to you.

8

7. (6 points) There is no middle ground.
Implement smallest_path which takes in a rectangular board and returns the top-to-bottom path with the
smallest total sum. A path can start from any position at the top of the board and move in one of three
directions: 1 place down, 1 place down and 1 place left, or 1 place down and 1 place right.
The board is a deep list of integers. board[0] returns the first row while board[-1] returns the last row.

def smallest_path(board):
"""Given a rectangular board represented as a deep list of integers, return the
top-to-bottom path with the smallest total sum. From a starting position, a path can move
1 place down; 1 place down and 1 place left; or 1 place down and 1 place right.

>>> small_board = [[1],
... [2],
... [3],
... [4]]
>>> smallest_path(small_board)
[1, 2, 3, 4]

>>> medium_board = [[1, 2, 3, 4, 5],
... [6, 7, 8, 1, 2],
... [2, 4, 5, 9, 1],
... [8, 9, 1, 2, 3]]
>>> smallest_path(medium_board)
[3, 1, 1, 2]

>>> large_board = [[-3, 3, -1, 3, 8], [4, 8, 7, 6, -5], [2, 3, -2, 7, 2], [-1, 8, 2, 4, 3],
... [0, 2, -1, 3, 5], [3, 6, 5, 7, -7], [1, 3, -8, -9, 1], [3, 0, -2, 7, 8]]
>>> smallest_path(large_board)
[3, -5, 2, 3, 3, -7, -9, -2]
"""

left_bound, right_bound = 0, len(board[0])

def path(board, location):

if not board:

return []

elif location < left_bound or location >= right_bound:

return [float('inf')] # a board with the value representing infinity

place = board[0][location]

left = path(board[1:], location - 1)

down = path(board[1:], location)

right = path(board[1:], location + 1)

return [place] + min(left, right, down, key=sum)

return min((path(board, l) for l in range(left_bound, right_bound)), key=sum)

1

2

3

4

1 2 3 4 5

6 7 8 1 2

2 4 5 9 1

8 9 1 2 3

Name: 9

8. (12 points) The Lannisters send their regards.

(a) (6 pt) Implement split which takes in a linked list s and a one-argument function pred and destructively
splits s in two, returning one linked list with all the elements that satisfy pred and another with the rest.
Do not call the Link constructor! The order of the elements does not need to be preserved. You may
not need all the lines.

class Link:
"""A linked list."""

empty = ()

def __init__(self, first, rest=empty):
self.first = first
self.rest = rest

def split(s, pred):
"""Mutatively split s, returning one with elements that satisfy pred and one without.

>>> s = Link(1, Link(2, Link(3, Link(4, Link(5)))))
>>> evens, odds = split(s, lambda x: x % 2 == 0)
>>> evens
Link(4, Link(2))
>>> odds
Link(5, Link(3, Link(1)))
"""

satisfy, not_satisfy = Link.empty, Link.empty

while s is not Link.empty:

rest = s.rest

if pred(s.first):

satisfy, s.rest = s, satisfy

else:

not_satisfy, s.rest = s, not_satisfy

s = rest

return satisfy, not_satisfy

10

(b) (6 pt) Implement split tail-recursively in Scheme. Unlike the previous problem in Python, your solution
may construct new pairs by calling cons or list, or by using the quote special form.

(define (split s pred)

(define (split-tail s satisfy not-satisfy)

(cond ((null? s) (list satisfy not-satisfy))

((pred (car s))

(split-tail (cdr s) (cons (car s) satisfy) not-satisfy))

(else

(split-tail (cdr s) satisfy (cons (car s) not-satisfy)))))

(split-tail s '() '()))

(define (even? x) (= (remainder x 2) 0))
(split '() even?)
; expect (() ())
(split '(1 2 3 4 5) even?)
; expect ((4 2) (5 3 1))

9. (4 points) One voice may speak you false, but in many there is always truth to be found.
For each of the following Scheme expressions, choose the correct number of calls that would be made to
scheme_eval and scheme_apply when evaluating the expression in our Scheme interpreter from the Scheme
Project. Assume the normal scheme_eval is in use, not tail-call-optimized scheme_optimized_eval.
Suppose we have already evaluated the following definition in the current environment.

(define lst (list 1 2 3))

(a) (2 pt)

(+ (car lst) (- 5 (car (cdr lst))))

Number of calls to scheme_eval # 3 # 5 # 8 # 10 # 11 13 # 15 # 17 # 19

Number of calls to scheme_apply # 1 # 2 # 3 # 4 5 # 6 # 7 # 8 # 9 # 10

(b) (2 pt)

((if (or (null? lst) (null? (cdr lst)))

(lambda (s) 0)

(lambda (s) (car (cdr s))))

lst)

Number of calls to scheme_eval # 8 # 9 # 11 # 13 # 16 # 17 18 # 21 # 22

Number of calls to scheme_apply # 1 # 2 # 3 # 4 # 5 6 # 7 # 8 # 9 # 10

Name: 11

10. (18 points) I’ve brought ice and fire together.
Consider the following schema that represents users, products, and sales in a database management system.

create table users(uid, uname, date_created);
create table products(pid, pname, description, rating, price);
create table sales(time, pid, uid);

• uid (user ID), pid (product ID), rating, price are numbers while all other columns are strings.
• The uid uniquely identifies one user because there may be users with the same uname and date_created.
• The pid uniquely identifies one product because there may be products with the same column values.
• The uid and pid in each row of sales references a uid in users and a pid in products.

Express the following queries in SQL using only features we’ve covered in this course.
Recall: Rows can be ordered in either asc ending (increasing) or desc ending (decreasing) order.

(a) (2 pt) Select the uname and product rating of any one user who purchased a highest-rated product (a
product such that there is no other product rated higher). If there is more than one such product, return
any one product.

select u.uname, p.rating

from users as u, products as p, sales as s

where u.uid = s.uid and s.pid = p.pid

order by p.rating desc limit 1;

(b) (3 pt) Select the uid, uname, and the number of products purchased for each user that has purchased at
least one product.

with s as (select uid, count(*) as num

from sales group by uid)

select u.uid, u.uname, s.num

from users as u, s

where u.uid = s.uid;

(c) (3 pt) Select the pid and the diff of the product with a price that is closest to the average price of all
products. That is, select the product with the smallest absolute difference between the product’s price
and the average price of all products. If there is more than one such product, return any one product.
Hint: The SQL function for absolute value is abs.

with a as (select avg(price) as average

from products)

select p.pid, abs(p.price - a.average) as diff

from products as p, a

order by diff asc limit 1;

12

(d) (6 pt) Let’s design a SQL-like query engine in Python. Implement LoopJoin, an iterator which takes
in two iterables and yields all possible combinations of rows from the two iterables and returns a joined
row on each call to __next__. Order matters! The first row of left_iterable should match with all the
rows of right_iterable before moving on to the second row of left_iterable. Each row is a tuple (an
immutable list) so two rows can be joined with the + operator. You may not need all the lines.

class LoopJoin:
"""A database join iterator that takes in two iterables and joins their rows.

>>> users = [(1, 'Kevin', '2017-05-19'), (2, 'Stan', '2017-06-20')]
>>> sales = [('2017-07-20', 9580, 2), ('2017-07-24', 8483, 2)]
>>> for row in LoopJoin(users, sales):
... print(row)
(1, 'Kevin', '2017-05-19', '2017-07-20', 9580, 2)
(1, 'Kevin', '2017-05-19', '2017-07-24', 8483, 2)
(2, 'Stan', '2017-06-20', '2017-07-20', 9580, 2)
(2, 'Stan', '2017-06-20', '2017-07-24', 8483, 2)
"""

def __init__(self, left_iterable, right_iterable):

self.left_iterator = iter(left_iterable)

self.right_iterator = iter(right_iterable)

self.left = next(self.left_iterator)

self.right_iterable = right_iterable

def __iter__(self):

return self

def __next__(self):

try:

right = next(self.right_iterator)

row = self.left + right

return row

except StopIteration:

self.right_iterator = iter(self.right_iterable)

self.left = next(self.left_iterator)

return next(self)

Name: 13

(e) (2 pt) Implement select and where, two generators that each take in two parameters: a one-argument
function and an iterator. select yields the result of applying columns to each row from the iterator. where
yields each row from the iterator if the row meets the given pred. You may not need all the lines.

def select(columns, iterator): def where(pred, iterator):

for row in iterator: for row in iterator:

yield columns(row) if pred(row):

yield row

(f) (2 pt) Now that we have assembled all the parts of the query engine, let’s compute! Complete the
assignment statement for query such that it passes the test below. Assume that the implementations for
select, where, and LoopJoin are correct.

>>> users = [(1, 'Kevin', '2017-05-19'), (2, 'Stan', '2017-06-20')]
>>> sales = [('2017-07-20', 9580, 2), ('2017-07-24', 8483, 2)]

>>> products = {8483: 'flowers', 9580: 'perfume'}

>>> query = select(lambda r: r[1] + ' purchased ' + products[r[4]],
...
... where(lambda r: r[0] == r[5],
...
... LoopJoin(users, sales)))

>>> for row in query:
... print(row)
Stan purchased perfume
Stan purchased flowers

11. (0 points) It seems your journey is finally over. You’re filled with DETERMINATION.

In this extra credit problem, you may write the first and last name of one other CS 61A student in
the blank below. If the other student also chose to write your name, then a friendship has formed.

The goal is to, as a class, form as many friendships as possible.

For each friendship, everyone receives two one-hundredths (0.02) extra credit points, representing each student
in the friendship. This means that if, as a class, 100 friendships form, then everyone receives two points.

You reach out and call their name:

Leave a message below.

14

This page intentionally left blank.

