1.1

1.2

(S 61A
Summer 2017

Mutability & OOP
Mentoring 9. July 19, 2017

1 List Mutation

What would Python display?

>>> a = [1, 2]
>>> a.append([3, 41)
>>> a

>>> b = list(a)
>>> al[e] =5
>>> a[2][e@] = 6
>>> b

>>> a.extend([7])

>>> g += [8]

Q

>>> a += 9

>>> a

Challenge:

>>> b[2]1[1] = al[2:]
>>> al[2][1]1[e][e]

Draw the box-and-pointer diagram.

>>> corgi = [3, 15, 18, 7, 9]
>>> husky = [8, 21, 19, 11, 25]
>>> poodle = corgi.pop()

>>> corgi += husky[-3:]



1.3

1.4

2 Mutability & OOP

Draw the box-and-pointer diagram.

>>> pom = [16, 15, 13]
>>> pompom = pom * 2

>>> pompom.append(pom[:])
>>> pom.extend(pompom)

Given some list 1st, possibly a deep list, mutate 1st to have the accumulated sum
of all elements so far in the list. If there is a nested list, mutate it to similarly reflect
the accumulated sum of all elements so far in the nested list. Return the total sum
of 1st.

Hint: You may find it useful to use the isinstance function, which returns true for

isinstance(l, list) if 1 is a list and false otherwise.

def accumulate(lst):
>>>1 = [1, 5, 13, 4]
>>> accumulate(l)
23
>>> 1
(1, 6, 19, 23]
>>> deep_1 = [3, 7, [2, 5, 6], 9]
32
>>> deep_1
[3, 10, [2, 7, 131, 32]

nwin



2 00P

2.1 Given the following code, what would Python display?

class Baller:
all_players = []
def __init__(self, name, has_ball = False):
self.name = name
self.has_ball = has_ball
Baller.all_players.append(self)

def pass_ball(self, other):
if self.has_ball:
self.has_ball = False
other.has_ball = True
return True
else:
return False

class BallHog(Baller):

def pass_ball(self, other):
return False

(a) anwar = Baller('Anwar', True)
jerry = BallHog('Jerry')
len(Baller.all_players)

(b) Baller.name

(c) len(jerry.all_players)

(d) anwar.pass_ball()

(e) anwar.pass_ball(jerry)

(f) anwar.pass_ball(jerry)

(g) BallHog.pass_ball(jerry, anwar)

(h) jerry.pass_ball(anwar)

(i) jerry.pass_ball(jerry, anwar)

Mutability ¢ OOP

3



4 Mutability & OOP

2.2 Write TeamBaller, a subclass of Baller. An instance of TeamBaller cheers on the team
every time it passes a ball.

class TeamBaller(_______________ )
>>> cheerballer = TeamBaller('Thomas', has_ball=True)
>>> cheerballer.pass_ball(jerry)
Yay!
True
>>> cheerballer.pass_ball(jerry)
I don't have the ball
False

nwn

def pass_ball(




	List Mutation
	OOP

