
STREAMS 10
COMPUTER SCIENCE 61AS

Basics of Streams

1. What is a stream?

2. How does memoization work?

3. Is a cons-stream a special form?

Practice with Streams

1. Define a procedure (ones) that, when run with no arguments, returns a cons pair whose
car is 1, and whose cdr is a procedure that, when run, does the same thing. Do NOT use
cons-stream.

2. Define a procedure (integers-starting n) that takes in a number n and, when run,
returns a cons pair whose car is n, and whose cdr is a procedure that, when run with no
arguments, does the same thing for n+1. Again, do NOT use cons-stream for this part.

1



DISCUSSION 10: STREAMS Page 2

3. Describe what the following expressions define:

a. (define s1

(add-stream (stream-map (lambda(x) (* x 2)) s1)

s1))

b. (define s2

(cons-stream 1 (add-stream (stream-map (lambda(x) (* x 2)) s2)

s2)))

c. (define s3

(cons-stream 1

(stream-filter (lambda(x) (not (= x 1))) s3)))

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 10: STREAMS Page 3
d. (define s4

(cons-stream 1

(cons-stream 2

(stream-filter (lambda(x) (not (= x 1))) s4))))

e. (define s5 (cons-stream 1 (add-streams s5 integers)))

4. Define facts without defining any procedures; the stream should be a stream of 1!, 2!, 3!,
4!, etc. More specifically, it returns a stream with elements (1 2 6 24 ...). Hint: use the
integers stream.

5. (HARD!) Define powers; the stream should be 11, 22, 33 or, (1 4 16 64 ...). You cannot
use the exponents procedure.

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 10: STREAMS Page 4

Practice with Streams

1. Define a procedure (lists-starting n) that takes in n and returns a stream contain-
ing (n), (n n+1), (n n+1 n+2) ... For example, (lists-starting 1) returns a
stream containing like
((1) (1 2) (1 2 3) (1 2 3 4))

2. Define a procedure, (list->stream ls) that takes in a list and converts it into a stream.
Remember, streams don’t have to be infinite, and finite streams end with the-empty-stream

3. Define a procedure (chocolate name) that takes in a name and returns a stream like so:

STk>(chocolate ’chung)

(chung really likes chocolate chung really really likes chocolate ...)

Youll want to use helper procedures.

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 10: STREAMS Page 5

Stream-processing

1. Define a procedure, (stream-censor s replacements) that takes in a stream s and
a table replacements and returns a stream with all instances of all the car of entries in
replacements replaced with the cadr of the entries.

STk> (stream-censor (hello you weirdo ...) ((you I-am) (weirdo an-idiot)))

(hello I-am an-idiot ...)

2. Define a procedure (make-alternating s) that takes in a stream of positive numbers
and alternate their signs. So

STk>(make-alternating ones)

(1 -1 1 -1 1 -1 ...)

and

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 10: STREAMS Page 6

STk>(make-alternating integers)

(1 -2 3 -4 ...)

. Assume s is an infinite stream.

My Bodys Floating Down The Muddy Stream

1. Given streams ones, twos, threes and fours, write down the first ten elements of:

(interleave ones (interleave twos (interleave threes fours)))

2. Construct a stream all-integers that includes 0 and both the negative and positive inte-
gers. You may use procedures that you have defined above.

3. Suppose we were foolish enough to try to implement stream-accumulate:

(define (stream-accumulate combiner null-value s)

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 10: STREAMS Page 7
(cond ((stream-null? s) null-value)

(else (combiner

(stream-car s)

(stream-accumulate

combiner null-value (stream-cdr s))))))

4. What happens when we do:

a. (define foo (stream-accumulate + 0 integers))

b. (define bar (cons-stream 1 (stream-accumulate + 0 integers)))

c. (define baz

(stream-accumulate

(lambda (x y) (cons-stream x y))

the-empty-stream

integers))

5. Louis Reasoner thinks that building a stream of pairs from three parts is unnecessarily com-
plicated. Instead of separating the pair (S0, T0) from the rest of the pairs in the first row, he
proposes to work with the whole first row, as follows:

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 10: STREAMS Page 8
(define (pairs s t)

(interleave

(stream-map (lambda (x) (list (stream-car s) x))

t)

(pairs (stream-cdr s) (stream-cdr t))))

Does this work? Consider what happens if we evaluate (pairs integers integers)

using Louis’s definition of pairs.

CS61AS Fall 2015: CS 61AS Staff


