Basics of Streams

1. What is a stream?

2. How does memoization work?

3. Is a cons-stream a special form?

Practice with Streams

1. Define a procedure \(\text{ones} \) that, when run with no arguments, returns a cons pair whose car is 1, and whose cdr is a procedure that, when run, does the same thing. Do NOT use cons-stream.

2. Define a procedure \(\text{integers-starting n} \) that takes in a number \(n \) and, when run, returns a cons pair whose car is \(n \), and whose cdr is a procedure that, when run with no arguments, does the same thing for \(n+1 \). Again, do NOT use cons-stream for this part.
3. Describe what the following expressions define:

a. (define s1
 (add-stream (stream-map (lambda(x) (* x 2)) s1)
 s1))

b. (define s2
 (cons-stream 1 (add-stream (stream-map (lambda(x) (* x 2)) s2)
 s2)))

c. (define s3
 (cons-stream 1
 (stream-filter (lambda(x) (not (= x 1))) s3)))
d. (define s4
 (cons-stream 1
 (cons-stream 2
 (stream-filter (lambda(x) (not (= x 1))) s4)))
)e. (define s5 (cons-stream 1 (add-streams s5 integers)))

4. Define facts without defining any procedures; the stream should be a stream of 1!, 2!, 3!, 4!, etc. More specifically, it returns a stream with elements (1 2 6 24 ...). Hint: use the integers stream.

5. (HARD!) Define powers; the stream should be 1^1, 2^2, 3^3 or, (1 4 16 64 ...). You cannot use the exponents procedure.
Practice with Streams

1. Define a procedure `(lists-starting n)` that takes in `n` and returns a stream containing `(n), (n n+1), (n n+1 n+2) ...`. For example, `(lists-starting 1)` returns a stream containing like
   ```
   ((1) (1 2) (1 2 3) (1 2 3 4))
   ```

2. Define a procedure, `(list->stream ls)` that takes in a list and converts it into a stream. Remember, streams don’t have to be infinite, and finite streams end with `the-empty-stream`.

3. Define a procedure `(chocolate name)` that takes in a name and returns a stream like so:
   ```
   STk>(chocolate 'chung)
   (chung really likes chocolate chung really really likes chocolate ...)
   ```
 You’ll want to use helper procedures.
Stream-processing

1. Define a procedure, \(\text{(stream-censor } s \text{ replacements)} \) that takes in a stream \(s \) and a table \(\text{replacements} \) and returns a stream with all instances of all the car of entries in \(\text{replacements} \) replaced with the cadr of the entries.

\[
\text{STk}> \text{(stream-censor (hello you weirdo ...)} \text{ ((you I-am) (weirdo an-idiot))} \\
\text{(hello I-am an-idiot ...)}
\]

2. Define a procedure \(\text{(make-alternating s)} \) that takes in a stream of positive numbers and alternate their signs. So

\[
\text{STk}>(\text{make-alternating ones)} \\
\text{(1 -1 1 -1 1 -1 ...)}
\]

and
My Bodys Floating Down The Muddy Stream

1. Given streams ones, twos, threes and fours, write down the first ten elements of:

 \[
 \text{(interleave ones (interleave twos (interleave threes fours)))}
 \]

2. Construct a stream all-integers that includes 0 and both the negative and positive integers. You may use procedures that you have defined above.

3. Suppose we were foolish enough to try to implement \text{stream-accumulate}:

 \[
 (\text{define (stream-accumulate combiner null-value s})
 \]
(cond ((stream-null? s) null-value)
 (else (combiner
 (stream-car s)
 (stream-accumulate
 combiner null-value (stream-cdr s))))))

4. What happens when we do:
 a. (define foo (stream-accumulate + 0 integers))

 b. (define bar (cons-stream 1 (stream-accumulate + 0 integers)))

 c. (define baz
 (stream-accumulate
 (lambda (x y) (cons-stream x y))
 the-empty-stream
 integers))

5. Louis Reasoner thinks that building a stream of pairs from three parts is unnecessarily complicated. Instead of separating the pair \((S_0, T_0)\) from the rest of the pairs in the first row, he proposes to work with the whole first row, as follows:
(define (pairs s t)
 (interleave
 (stream-map (lambda (x) (list (stream-car s) x)) t)
 (pairs (stream-cdr s) (stream-cdr t))))

Does this work? Consider what happens if we evaluate (pairs integers integers) using Louis’s definition of pairs.