
LAMBDAS AND HIGHER ORDER FUNCTIONS 2
COMPUTER SCIENCE 61AS

The Basics of Lambdas

1. What does a lambda expression always return?

2. Express the following expressions using lambda instead of their named counterparts.

a. square

b. (square 4)

c. sum-of-squares

d. (sum-of-squares 3 (+ 2 2))

What Will Racket Print?

What do the following expressions evaluate to?

1. (lambda (x) (* x 2))

1



DISCUSSION 2: LAMBDAS AND HIGHER ORDER FUNCTIONS Page 2
2. ((lambda (x) (* x 2)) 10)

3. ((lambda (b) (* 10 ((lambda (c) (* c b)) b)))

((lambda (e) (+ e 5)) 5))

4. ((lambda (x) (x x)) (lambda (y) 4))

5. ((lambda (x y) (y x)) * (lambda (a) (a 3 5)))

6. ((lambda (n) (+ n 10))

((lambda (m) (m ((lambda (p) (* p 5)) 7)))

(lambda (q) (+ q q))))

Practice with Lambdas

1. Write a procedure, foo, that given the call below, will evaluate to 10.

((foo foo foo) foo 10)

2. Write a procedure, bar, that given the call below, will evaluate to 10.

(bar (bar (bar 10 bar) bar) bar)

3. What does the following evaluate to? (This one is hard!)

((lambda (f x) (f f x))

(lambda (k n)

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 2: LAMBDAS AND HIGHER ORDER FUNCTIONS Page 3
(if (< n 2)

1

(* n (k k (- n 1)))))

4)

The Basics of Higher Order Functions

1. What is a higher-order function? What are some examples you’ve seen so far?

2. Recall the procedure keep, which takes in a predicate procedure and a sentence, and throws
away all words of the sentence that don’t satisfy the predicate.

Explain why (keep (< 6) ’(4 5 6 7 8)) doesn’t work. Then, re-write the expression
so it works (use a lambda!).

Practice with Higher Order Functions

1. Write accumulate. Accumulate takes in a combiner function, an initial value, and a sen-
tence.

(accumulate + 0 ’(1 2 3 4))

10

(accumulate * 1 ’(1 2 3 4))

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 2: LAMBDAS AND HIGHER ORDER FUNCTIONS Page 4
24

(accumulate word ’while ’(my guitar gently weeps))

whilemyguitargentlyweeps

2. Write a procedure f-expt, (f-expt func power) that returns a procedure which is equivalent
to func applied power times. Assume func takes in only a single argument. For example,
((f-expt 1+ 3) 2) is 5, because (1+ (1+ (1+ 2))) is 5.

3. Write a procedure curry. Curry takes in a function (that takes in two arguments) and a
value. It returns a function that takes in one argument.

((curry sum-of-squares 3) 4)

25

((curry sum-of-squares 3) 9)

100

4. We’re going to play hide-and-go-seek. Let’s say, a seeker is a procedure that takes in a sen-
tence, and seeks out a certain word in the sentence. It returns the word if the word is found,
or #f otherwise. For example, if we have a 4-seeker, a seeker that seeks out the number 4,

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 2: LAMBDAS AND HIGHER ORDER FUNCTIONS Page 5
then

(4-seeker (1 2 3 4 5)) ==> 4

(4-seeker (1 2 3)) ==> #f

A seeker-producer is a procedure that takes in an element x and returns a procedure (a
seeker) that takes in a sentence sent and returns x if the element x is in the sentence sent,
and #f otherwise.

a. Make a call to seeker-producer to find out if 4 is in the sentence ’(9 3 5 4 1 0).
seeker-producer is the only procedure you can use! What does it return?

b. Implement seeker-producer, without using internal defines or member?. (Hint: think
lambdas and recursion!)

(define (seeker-producer x)

5. Of course, it’s not much of a game if we can’t hide! A hider of a word is a procedure that
takes in a sentence and hides the word behind an asterisk if it exists. For example, if we have
a 4-hider, a hider that hides the number 4, then

(4-hider (1 2 3 4 5)) ==> (1 2 3 *4 5)

Write a procedure hider-producer that takes in an element y, and returns a procedure (a
hider) that takes in a sentence sent and returns the same sentence with element y hidden
behind an asterisk, if it exists.

You’ll probably want to use every to help you.

(define (hider-producer x)

CS61AS Fall 2015: CS 61AS Staff


