RECURSION, ITERATION, AND EFFICIENCY

COMPUTER SCIENCE 61AS

Basics of Recursion and Iteration

. What is a tail-recursive call?

. Why do we say certain procedures generate recursive and iterative processes when recursion
is used either way?

. What is the primary reason to use iteration instead of recursion?

. What is a disadvantage of using iteration?

. Identify whether each procedure will generate a recursive or an iterative process.

a. (define (fac n)
(if (= n 1)
1
(* n (fac (- n 1)))))



DISCUSSION 3: RECURSION, ITERATION, AND EFFICIENCY

Page 2

b. (define (foo a b)
(1f (< a 0)
b
(foo (- a 1) (+ b 1))))

C. (define (bar n)
(define (loop 1i)
(i1f (= 1 0)
nil
(se (loop (quotient i 2))
(Loop n))

(remainder 1 2))))

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 3: RECURSION, ITERATION, AND EFFICIENCY Page 3
Practice with Recursion/Iteration

1. Determine whether each procedure generates a recursive/iterative process. If the procedure
generates a recursive process, rewrite it so it generates an iterative one and vice versa for
iterative processes.

a. (define (count-letters sent)
(count-helper sent 0))
(define (count-helper sent letter—-count)
(1f (empty? sent)
letter—-count
(count—-helper (bf sent)
(+ letter-count
(count (first sent))))))

b. (define (remove-letter letter wd)
(cond ((empty? wd) "")
((eg? (first wd) letter) (remove-letter letter (bf wd)))
(else (word (first wd) (remove-letter letter (bf wd))))))

Basics of Orders of Growth

1. Rank the orders of growth from slowest to fastest: 6(n), (1), 0(n?),8(logn)

2. If we know that a procedure that has an input of size n runs in 6(n?) time, is it possible to
determine how long it will take to finish on a given input? Why/Why not?

3. Will a procedure that runs in 6(n?) always run slower than a procedure that runs in 6(n)?
Why/Why not?

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 3: RECURSION, ITERATION, AND EFFICIENCY Page 4

Practice with Orders of Growth

1. Using big-theta notation, classify the order of growth for both time and memory used by
each of the procedures below.

a. (define (min-sent sent)
(if (empty? (bf sent))
(first sent)
(min (first sent) (min-sent (bf sent)))))

b. (define (foo n)
(define (loop num)
(if (= num 0)
()
(se (loop (quotient num 2)) (remainder num 2))))
(loop n))

c. A procedure called all-pair-sums, which takes a sentence of numbers and returns a
sentence of all the sums of every possible pair of numbers in the sentence. Only give the
order of growth for time.

(all-pair-sums " (1 2 3)) => (3 4 5) ;; (1+2 1+3 2+3)
(all-pair-sums (2 4 5 6)) => (6 7 8 9 10 11)

CS61AS Fall 2015: CS 61AS Staff



