DATA ABSTRACTION AND SEQUENCES

COMPUTER SCIENCE 61AS

Basics of Pairs and Sequences

1. Whatis the value of (car 7 (1 . 2))?

Solution: 1

2. What is the value of (cdr 7 (1))?

Solution: ()

Remember that (1ist a b c) isthesamethingas (cons a (cons b (cons c ()))]),
and that other invocations of list behave in the same way. ’ () is the empty list —its a
special value that is a list but not a pair. You can check if something is the empty list
using the predicate null?.

3. Supposelenter (cons (1 . 2) ' (3 . 4)) intotheinterpreter. What will Racket print?

Solution: ((1 . 2) 3 . 4)

How you can think about Racket printing a pair:
It prints a (, recursively prints the car, prints ., recursively prints the cdr, and prints).

Once this is done, it goes back, and if it ever sees . (, it throws away the ., the (, and
the matching) .

In this example, our firstideaistosay ((1 . 2) . (3 . 4)). Thenaccording to the
rule above, we take out the . (and its matching parenthesis to end up with

((L . 2) 3 . 4).

DISCUSSION 4: DATA ABSTRACTION AND SEQUENCES Page 2
Practice with Pairs and Sequences

1. What will Racket print if each of these are entered into the interpreter? If it is an error, write
‘error’. Draw the box and pointer diagram for each one if possible.

a. (cons (cons (cons 1 4) 5) (cons 3 (list 4)))

Solution: (((1 . 4) . 5) 3 4)

b. (append (cons 1 (list 3)) (list (cons 1 2)))

Solution: (1 3 (1 . 2))

Cc. (list (append (list 2 4) (list (list (list 6))) *(3)) ‘(1))

Solution: ((2 4 ((6)) 3) (1))

CS61AS Fall 2015: CS 61AS Staff

DISCUSSION 4: DATA ABSTRACTION AND SEQUENCES Page 3
Basics of Data Abstraction

1. Why do we define constructors and selectors rather than just telling people use car and
cdr?

Solution: Using constructors and selectors allows us to abstract away the internal rep-
resentation of objects and be more expressive when we create them.

The idea of data abstraction is to conceal the representation of some data and to instead
reveal a standard “interface” that is more aligned with what the data represents as op-
posed to how the data is represented.

To give a concrete example when you use numbers in Racket, you dont care how they
are represented you just care about whether you know what they mean. Would you
prefer to code (» 22 7) toget154 or (» 10110 111) toget10011010 (the internal
representation)?

2. I want to create an ADT representing a point in 2D space that keeps track of its x and y
coordinates. Define a set of possible constructor/selectors called make-point, point-x,
and point-y.

Solution: One possible solution:

(define make-point cons)
(define point-x car)
(define point-y cdr)

Another possible solution (using a list this time):

(define make-point list)
(define point-x car)

(define point-y cadr)

CS61AS Fall 2015: CS 61AS Staff

DI1SCUSSION 4: DATA ABSTRACTION AND SEQUENCES

Page 4

Practice with Data Abstraction

1. Suppose we want to write a procedure which, given a list of grades (numbers between 0
and 100), finds both the minimum and the maximum grade. Since in Racket we can only
return one thing, well invent a new ADT a num-pair. Assuming you have already de-

fined the constructor, make-num-pair, and the selectors, first-num and second—num,
write a procedure minmax which takes in a list of numbers and returns a num-pair whose
first—numis the minimum element and whose second—num is the maximum element.
You may assume that the input list has at least one number.

Solution:

(define (minmax grades)

(make-num-pair

(define (min-grades grades)
(1f (null?
(car grades)

(cdr grades))

(min (car grades)
(define (max—-grades grades)
(if (null?

(car grades)

(cdr grades))

(max (car grades)

(min-grades grades)

(min—-grades

(max—grades

(max—grades grades)))

(cdr grades)))))

(cdr grades)))))

2. Now lets actually write the constructors and selectors. But lets test 3 different types!

a. Write constructors and selectors which represent a num-pair as a pair/list.

> (pair?
#t

> (second-num (minmax
95

(make-num-pair 50 60))

(89 94 83 95 91 50)))

Solution:

(define make-num-pair cons)
(define first-num car)

(define second-num cdr)

CS61AS Fall 2015: CS 61AS Staff

DI1SCUSSION 4: DATA ABSTRACTION AND SEQUENCES Page 5

b. Write constructors and selectors which represent a num-pair as a number. (Hint: Remem-
ber that since the numbers represent grades, they must be in the range 0-100, inclusive.)

> (number? (make-num-pair 50 60))

#t

> (first—-num (minmax (89 94 83 95 91 50)))
50

Solution:

(define (make-num-pair a b) (+ (» 101 a) b))
(define (first-num pair) (quotient pair 101))

(define (second-num pair) (remainder pair 101))

c. Write constructors and selectors which represent a num-pair as a procedure.

> (procedure? (make—-num-pair 50 60))
#t

> (second—-num (minmax (89 94 83 95 91 50)))
95

Solution:

(define (make-num-pair a b)
(lambda (m)
(if (=m 0) a b)))
(define (first-num pair) (pair 0))

(define (second-num pair) (pair 1))

CS61AS Fall 2015: CS 61AS Staff

