HIERARCHICAL DATA

COMPUTER SCIENCE 61AS

Concepts and Definitions

. What is a Tree? How is it different from a Deep List? When would you use one over the
other?

. What is mutual recursion?

. When working with trees, what is (typically) the input to each mutually recursive proce-
dure?

. What is a binary tree? Which selectors do we use for it?

. What is car/cdr recursion?

Practice with Capital-T Trees

. Assume forest is a forest (list of Trees) and t ree is a Tree where each element is a number.
For each of the following lines of code, say whether it is a data abstraction violation, a
domain/range mismatch, or valid.

a. (car forest)

DISCUSSION 5: HIERARCHICAL DATA Page 2

b. (car tree)

C. (children tree)

d. (children forest)

e. (null? (children tree))

f. (cdr (children tree))

2. Write a procedure add-child-lengths which takes as input a tree, and produces as out-
put a new tree in which each datum is now a list whose first element is the original datum,
and whose second element is the number of children it has. (You can find the length of a
list using the 1ength procedure.) Use mutual recursion here.

3. Write sum-tree, which takes as input a tree of numbers and produces as output the sum of
all the numbers in the tree. You should use sequence operations (map, filter, accumulate)
to implement it. No helper procedures allowed! (This is a hard question to start with, so
you may want to first do it with mutual recursion, which is easier.)

CS61AS Fall 2015: CS 61AS Staff

DISCUSSION 5: HIERARCHICAL DATA Page 3

4. listify-tree takes as input a tree and produces as output a flat (not deep) list of all of
the datums in the tree, in any order.

a. Write 1istify-tree using higher order functions.

b. Write 1istify-tree using mutual recursion.

5. Write count-leaves, which returns the number of leaves in the input tree. A leaf is any
tree which has no children.

CS61AS Fall 2015: CS 61AS Staff

DISCUSSION 5: HIERARCHICAL DATA Page 4

Practice with HOFs and Deep Lists

1. Louis Reasoner writes a procedure, deep-squares, that takes in a deep list and squares
every number in it. He writes the following code.

(define (deep-squares lol)
(cond ((null? lol) " ())
((list? (car 1lol))
(cons (map square (car lol))
(deep—squares (cdr 1lol))))
(else (cons (square (car lol))
(deep-squares (cdr 1lol))))))

a. Say whether the code above will error, work, or is a data abstraction violation.

(deep-squares ' ())
(deep—squares ' (1 (2 3) (4 5))
1

(deep—squares ' ((2 (3) 4) (((5))))

b. Now fix Louis’s code. Hint: it can be fixed with an extremely small change. Do NOT use
deep-map in your solution.

2. Express the following function without using recursion. (Hint: use map).

(define (jelly-words 1lst)
(if (null? 1st)
")
(cons (word ’"jelly (car 1st))
(jelly-words (cdr 1lst)))))

> (jelly-words ’ (fish bean donut car cdr))
(jellyfish jellybean jellydonut jellycar jellycdr)

CS61AS Fall 2015: CS 61AS Staff

DISCUSSION 5: HIERARCHICAL DATA Page 5
3. Express the following function without using recursion.

(define (sgrt-positives nums)
(cond ((null? nums) ' ())
((<= (car nums) 0) (sgrt-positives (cdr nums)))
(else (cons (sgrt (car nums))
(sgrt-positives (cdr nums))))))

> (sgrt-positive " (1 -9 5 -4))
(1 25)

Practice with Car/cdr Recursion

1. Write the procedure sum-binary-tree, which sums the datum of a binary tree.

2. Now, write the procedure sum-cons-structure, which should work on any structure
created by cons. Would (sum-cons-structure bt) evaluate to the same thing as
(sum-binary-tree bt) (assuming that bt is a valid input to sum-binary-tree)? If
yes, why don’t we generally do this? If no, why not?

CS61AS Fall 2015: CS 61AS Staff

