GENERIC OPERATORS AND RACKET1.RKT

COMPUTER SCIENCE 61AS

Racket-1 Practice

1. Exercise 1 (Long): Show how racketl evaluates the following expression. Show all of the
calls to eval-1, apply-1 and substitute. Dont show recursive calls to substitute though. (In
essence, if we traced all 3 of these procedures, but ignored recursive calls to substitute, what
would be the output?) Note: If you want to understand how substitute works, you should
trace the recursive calls to substitute as well.

(((lambda (x)
((lambda (y)
(lambda (x) (+ x y X)))
x)) 5) 10



DI1SCUSSION 6: GENERIC OPERATORS AND RACKET1.RKT Page 2

2. If I type this into Racket, I get an unbound variable error: (eval-1 'x) Why didnt this just
return x, unquoted? What should I have typed in instead? (Assume that I want to use eval-1
from Racket in order to get the symbol x, unquoted.)

CS61AS Fall 2015: CS 61AS Staff



DI1SCUSSION 6: GENERIC OPERATORS AND RACKET1.RKT Page 3

3. Hacking Racket-1: For some reason, this expression works:

(" (lambda (x) (* x x)) 3)

In Racket, this would cause an error, because of the quote in front of the lambda expression.
Why does it work in Racket-1? What fact about Racket-1 does this exploit?

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 6: GENERIC OPERATORS AND RACKET1.RKT Page 4
(define (eval-1 exp)

(cond ((constant? exp) exp)
((symbol? exp) (eval exp)) ; use underlying Racket’s EVAL
((quote—exp? exp) (cadr exp)
((1f-exp? exp)
(if (eval-1 (cadr exp))
(eval-1 (caddr exp))
(eval-1 (cadddr exp))))
((lambda-exp? exp) exp)
((pair? exp) (apply-1 (eval-1 (car exp)) ; eval the operator
(map eval-1 (cdr exp))))
(else (error "bad expr: " exp))))
(define (apply-1 proc args)
(cond ((procedure? proc) ; use underlying Racket’s APPLY
(apply proc args))
((lambda-exp? proc)
(eval-1 (substitute (caddr proc) ; the body
(cadr proc) ; the formal parameters
args ; the actual arguments
"()))) ; bound-vars, see below
(else (error "bad proc: " proc))))
(define (substitute exp params args bound)
(cond ((constant? exp) exp)
((symbol? exp)
(1f (memg exp bound)
exp
(lookup exp params args)))
((quote—exp? exp) exp)
((lambda-exp? exp)
(list ’lambda
(cadr exp)
(substitute (caddr exp)
params
args
(append bound (cadr exp)))))
(else (map (lambda (subexp)
(substitute subexp
params
args
bound) )
exp))))

CS61AS Fall 2015: CS 61AS Staff



DI1SCUSSION 6: GENERIC OPERATORS AND RACKET1.RKT Page 5
Data Directed Programing

Exercise 4: The TAs have broken out in a cold war; apparently, at the last midterm-grading session,
someone ate the last potsticker and refused to admit it. It is near the end of the semester, and
Professor Hilfinger really needs to enter the grades. Unfortunately, the TAs represent the grades
of their students differently, and refuse to change their representation to someone elses. Professor
Hilfinger is far too busy to work with five different sets of procedures and five sets of student
data, so for educational purposes, you have been tasked to solve this problem for him. The TAs
have agreed to type-tag each student record with their (the TAs) first name, conforming to the
following standard:

(define type-tag car)
(define content cdr)

Its up to you to combine their representation into a single interface for Professor Hilfinger to use.

a. Write a procedure (make-tagged-record ta-name record) that takes in a TAs student record, and
type-tags it so its consistent with the type-tag and content selector procedures defined above.

b. A student record consists of two things: a name item and a grade item. Each TA represents
a student record differently. Marion uses a list, whose first element is a name item, and the
second element the grade item. Jisoo uses a cons pair, whose car is the name item, and the cdr
the grade item. Make calls to put and get, and write generic gethame and get-grade procedures
that take in a tagged student record and return the name or grade items, respectively.

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 6: GENERIC OPERATORS AND RACKET1.RKT Page 6

c. Each TA represents names differently. Jisoo uses a cons pair, whose car is the last name and
whose cdr is the first. Sam is so cool that a name is just a word of two letters, representing
the initials of the student (so George Bush would be gb). Make calls to put and get to prepare
the table, then write generic get-first-name and get-lastname procedures that take in a tagged
student record and return the first or last name, respectively.

d. Each TA represents grades differently. Marion is lazy, so his grade item is just the total number
of points for the student. Sam is more careful, so his grade item is an association list of pairs;
each pair represents a grade entry for an assignment, so the car is the name of the assignment,
and the cdr the number of points the student got. Make calls to put and get to prepare the
table, and write a generic get-total-points procedure that take in a tagged student record and
return the total number of points the student has.

e. Now Professor Hilfinger wants you to convert all student records to the format he wants. He
has supplied you with his record-constructor, (make-student-record name grade), which takes
in a name item and a grade item, and returns a student record in the format Professor Hilfinger
likes. He also gave you (make-name first last), which creates a name item, and (make-grade
total-points), which takes in the total number of points the student has and creates a grade
item. Write a procedure, (convert-to-hilfinger-format records), which takes in a list of student
records, and returns a list of student records in Professor Hilfingers format, each record tagged
with "Hilfinger.

CS61AS Fall 2015: CS 61AS Staff



