ASSIGNMENT, STATE AND ENVIRONMENTS

COMPUTER SCIENCE 61AS

Local State Variables

1. What are local state variables and why do we use them?

2. What will Scheme output?

(define (make-counter number)
(lambda ()
(begin (set! number (+ number 1))
number) ))

(define ¢l (make—counter 1))
(define c2 (make-counter 1))

(cl)

3. At this point, can we still use the substitution model of evaluation? Why or why not?

4. Fill in the blanks with the values of the expressions shown:

(define x 1)
(define foo



DISCUSSION 8: ASSIGNMENT, STATE AND ENVIRONMENTS Page 2
(let ((x x))
(lambda ()
(set! x (+ x 1))
x)))

The Environment Model of Evaluation

1. What is a frame? When are frames created?

2. What is the initial frame, if no frame has been created?

3. How is a variable evaluated?

4. What are the two things that create a new frame?

Environment Diagrams

Draw environment diagram for each, and say what the code evaluates to.

1. (define (foo x)
(bar x 4))
(define (bar y z)
(= vy z))

(foo 9)

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 8: ASSIGNMENT, STATE AND ENVIRONMENTS Page 3

2. (define x 10)
(define y 20)

(let ((x vy)
(y x))
(set! x v)

(set! vy x)
(= xv))

3. (define (compose f g)
(lambda (x) (f (g x))))
(define mystery

(compose
(lambda (x) (+ x 5))
(lambda (x) (* x 10))))
(mystery 123)

OOP Below the Line

Lets revisit Tic-Tac-Toe! Rewrite the board class without using the OOP language. The code in
OOQP is given below. After you rewrite it, there will be a different way of instantiating a board,
and a different way of calling a method on a board, analogous to the transformation of the counter
class shown in the lecture notes/webcast.

Then, give a sample interaction which creates a board, and invokes play-move with piece x, and
coordinates (1, 0). Show the environment diagram generated by this interaction.

(define—-class (board)
(instance-vars (grid (make-grid)))
(method (piece x y) (get-piece grid x y))

CS61AS Fall 2015: CS 61AS Staff



DISCUSSION 8: ASSIGNMENT, STATE AND ENVIRONMENTS Page 4
(method (play-move piece x Vy)

(set! grid (next—-grid grid piece x y)))

CS61AS Fall 2015: CS 61AS Staff



