CS61B Lecture #15: Integers

Today:
- Integer Types

Readings for Today: Assorted Materials on Java, Chapter 3.

Readings for Upcoming Topics: Data Structures (Into Java), Chapter 1; Head First Java, Chapter 16.

Reminder: We’ll be doing a dry-run Project #1 test Tuesday night.

Integer Types and Literals

<table>
<thead>
<tr>
<th>Type</th>
<th>Bits</th>
<th>Signed?</th>
<th>Literals</th>
</tr>
</thead>
<tbody>
<tr>
<td>byte</td>
<td>8</td>
<td>Yes</td>
<td>'a' // (char) 97, 'n' // newline ((char) 10) 't' // tab ((char) 8) '' // backslash</td>
</tr>
<tr>
<td>short</td>
<td>16</td>
<td>Yes</td>
<td>'A', '\101', '\u0041' // == (char) 65</td>
</tr>
<tr>
<td>char</td>
<td>16</td>
<td>No</td>
<td>123</td>
</tr>
<tr>
<td>int</td>
<td>32</td>
<td>Yes</td>
<td>0100 // Octal for 64, 0x3f, 0xffffffff // Hexadecimal 63, -1 (!)</td>
</tr>
<tr>
<td>long</td>
<td>64</td>
<td>Yes</td>
<td>123L, 01000L, 0x3fL, 1234567891011L</td>
</tr>
</tbody>
</table>

- "N bits" means that there are 2^N integers in the domain of the type.
- If signed, range of values is $-2^{N-1} \ldots 2^{N-1} - 1$.
- If unsigned, only non-negative numbers, and range is $0 \ldots 2^N - 1$.
- Negative numerals are just negated (positive) literals.
- Use casting for byte and short: (byte) 12, (short) 2000.

Modular Arithmetic

- Problem: How do we handle overflow, such as occurs in $10000 \times 10000 \times 10000$?
- Some languages throw an exception (Ada), some give undefined results (C, C++)
- Java defines the result of any arithmetic operation or conversion on integer types to “wrap around”—modular arithmetic.
- That is, the “next number” after the largest in an integer type is the smallest (like "clock arithmetic").
- E.g., (byte) 128 == (byte) (127+1) == (byte) -128
- In general,
 - If the result of some arithmetic subexpression is supposed to have type T, an n-bit integer type,
 - then we compute the real (mathematical) value, x,
 - and yield a number, x', that is in the range of T, and that is equivalent to x modulo 2^n.
 - (That means that $x - x'$ is a multiple of 2^n.)

Modular Arithmetic II

- (byte) (64*8) yields 0, since $512 - 0 = 2 \cdot 2^8$.
- (byte) (64*2) and (byte) (127+1) yield -128, since $128 - (-128) = 1 \cdot 2^8$.
- (byte) (345*6) yields 22, since $2070 - 22 = 8 \cdot 2^6$.
- (byte) (-30*13) yields 122, since $-390 - 122 = -2 \cdot 2^8$.
- (char) (-1) yields $2^{16} - 1$, since $-1 - (2^{16} - 1) = 2^{16}$.
- Natural definition for a machine that uses binary arithmetic:

<table>
<thead>
<tr>
<th>Type char</th>
<th>Type byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = 0000000000000000</td>
<td>0 = 0000000000000000</td>
</tr>
<tr>
<td>1 = 0000000100000000</td>
<td>1 = 0000000100000000</td>
</tr>
<tr>
<td>2^{16} - 1 = 1111111111111111</td>
<td>127 = 0111111111111111</td>
</tr>
<tr>
<td>-128 = 1000000000000000</td>
<td>-128 = 1000000000000000</td>
</tr>
</tbody>
</table>

- Terminology: rightmost (units) bit is bit 0, 2s bit is bit 1.
- Hence, changing bit n modifies value by 2^n; truncating on left to n bits computes modulo 2^n.
Negative numbers

- Why this representation for -1?

\[
\begin{array}{c|c}
1 & 00000001_2 \\
+1 & 11111111_2 \\
\hline
= & 10000000_2 \\
\end{array}
\]

Only 8 bits in a byte, so bit 8 falls off, leaving 0.

- The truncated bit is in the \(2^8\) place, so throwing it away gives an equal number modulo \(2^8\). All bits to the left of it are also divisible by \(2^8\).

On unsigned types (char), arithmetic is the same, but we choose to represent only non-negative numbers modulo \(2^{16}\):

\[
\begin{array}{c|c}
1 & 0000000000000001_2 \\
+2^{16} - 1 & 1111111111111111_2 \\
= & 0000000000000000_2 \\
\end{array}
\]

Conversion

- In general Java will silently convert from one type to another if this makes sense and no information is lost from value.

- Otherwise, cast explicitly, as in \((\text{byte}) x\).

Hence, given

byte aByte; char aChar; short aShort; int anInt; long aLong;

// OK:
aShort = aByte; anInt = aByte; anInt = aShort; anInt = aChar; aLong = anInt;

// Not OK, might lose information:
anInt = aLong; aByte = anInt; aChar = anInt; aShort = anInt; aShort = aChar; aChar = aShort; aChar = aByte;

// OK by special dispensation:
aByte = 13; // 13 is compile-time constant
aByte = 12+100 // 112 is compile-time constant

Promotion

- Arithmetic operations (+, *, ...) promote operands as needed.

- Promotion is just implicit conversion.

- For integer operations,
 - if any operand is long, promote both to long.
 - otherwise promote both to int.

So,

\[
a\text{Byte} + 3 \equiv (\text{int}) a\text{Byte} + 3 \quad // \text{Type int}
a\text{Long} + 3 \equiv a\text{Long} + (\text{long}) 3 \quad // \text{Type long}
\]

\[\text{‘A’} + 2 \equiv (\text{int}) \text{‘A’} + 2 \quad // \text{Type int}
\]

\[a\text{Byte} = a\text{Byte} + 1 \quad // \text{ILLEGAL (why?)}
\]

But fortunately,

\[a\text{Byte} += 1; \quad // \text{Defined as } a\text{Byte} = (\text{byte}) (a\text{Byte}+1)
\]

- Common example:

 // Assume aChar is an upper-case letter
 char lowerCaseChar = (char) (‘a’ + aChar - ‘A’); // why cast?

Bit twiddling

- Java (and C, C++) allow for handling integer types as sequences of bits. No "conversion to bits" needed: they already are.

- Operations and their uses:

<table>
<thead>
<tr>
<th>Mask</th>
<th>Set</th>
<th>Flip</th>
<th>Flip all</th>
</tr>
</thead>
<tbody>
<tr>
<td>00101100</td>
<td>00101100</td>
<td>00101100</td>
<td>00101100</td>
</tr>
<tr>
<td>& 10100111</td>
<td>10100111</td>
<td>~ 10100111</td>
<td>~ 10100111</td>
</tr>
<tr>
<td>00100100</td>
<td>10101111</td>
<td>10001011</td>
<td>01011000</td>
</tr>
</tbody>
</table>

- Shifting:

<table>
<thead>
<tr>
<th>Left</th>
<th>Arithmetic Right</th>
<th>Logical Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101101 << 3</td>
<td>10101101 >> 3</td>
<td>10101100 >> 3</td>
</tr>
<tr>
<td>01101000</td>
<td>11110101</td>
<td>00010101</td>
</tr>
</tbody>
</table>

\((-1) >>> 29\)

- What is:

\[x << n?\]
\[x >> n?\]
\[(x >>> 3) & ((1<<5)-1)?\]