CS61B Lecture #16

Announcements:

• CSUA help session on Subversion today 4-6PM in the Wozniak lounge (north side of Soda on 4th floor).

• Please use bug-submit for code problems.

• Watch the newsgroup and class web site for updates, hints, useful new utilities, etc.

Readings for Today: Data Structures (Into Java), Chapter 1;

Readings for next Topics: Data Structures, Chapter 2-4, Head First Java, Chapter 16.
What Are the Questions?

- **Cost** is a principal concern throughout engineering:

 “An engineer is someone who can do for a dime what any fool can do for a dollar.”

- **Cost** can mean

 - Operational cost (for programs, time to run, space requirements).
 - Development costs: How much engineering time? When delivered?
 - Costs of failure: How robust? How safe?

- **Is this program** fast enough? Depends on:

 - For what purpose;
 - What input data.

- **How much space** (memory, disk space)?

 - Again depends on what input data.

- **How will it scale**, as input gets big?
Enlightening Example

Problem: Scan a text corpus (say 10^7 bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.

- Solution 1 (Knuth): Heavy-Duty data structures
 - Hash Trie implementation, randomized placement, pointers galore, several pages long.

- Solution 2 (Doug McIlroy): UNIX shell script:
  ```bash
  tr -c -s '[:alpha:]' '[:\n*]' < FILE | \
  sort | \
  uniq -c | \
  sort -n -r -k 1,1 | \
  sed 20q
  ```

- Which is better?
 - #1 is much faster,
 - but #2 took 5 minutes to write and processes 20MB in 1 minute.
 - I pick #2.

- In most cases, anything will do: Keep It Simple.
Cost Measures (Time)

- Wall-clock or execution time
 - You can do this at home:
    ```
    time java FindPrimes 1000
    ```
 - Advantages: easy to measure, meaning is obvious.
 - Appropriate where time is critical (real-time systems, e.g.).
 - Disadvantages: applies only to specific data set, compiler, machine, etc.

- Number of times certain statements are executed:
 - Advantages: more general (not sensitive to speed of machine).
 - Disadvantages: doesn’t tell you actual time, still applies only to specific data sets.

- Symbolic execution times:
 - That is, formulas for execution times or statement counts in terms of input size.
 - Advantages: applies to all inputs, makes scaling clear.
 - Disadvantage: practical formula must be approximate, may tell very little about actual time.
Asymptotic Cost

• Symbolic execution time lets us see shape of the cost function.

• Since we are approximating anyway, pointless to be precise about certain things:

 - Behavior on small inputs:
 * Can always pre-calculate results some results.
 * Times for small inputs not usually important.

 - Constant factors (as in “off by factor of 2”):
 * Just changing machines causes constant-factor change.

• How to abstract away from (i.e., ignore) these things?
Handy Tool: Order Notation

- Idea: Don’t try to produce specific functions that specify size, but rather families of similar functions.
- Say something like “f is bounded by g if it is in g’s family.”
- For any function $g(x)$, the functions $2g(x)$, $1000g(x)$, or for any $K > 0$, $K \cdot g(x)$, all have the same “shape”. So put all of them into g’s family.
- Any function $h(x)$ such that $h(x) = K \cdot g(x)$ for $x > M$ (for some constant M) has g’s shape “except for small values.” So put all of these in g’s family.
- If we want upper limits, throw in all functions that are everywhere \leq some other member of g’s family. Call this family $O(g)$ or $O(g(n))$.
- Or, if we want lower limits, throw in all functions that are everywhere \geq some other member of g’s family. Call this family $\Omega(g)$.
- Finally, define $\Theta(g) = O(g) \cap \Omega(g)$—the set of functions bracketed by members of g’s family.
Big Oh

• **Goal**: Specify bounding from above.

\[M = 1 \]

\[f(x) \leq 2g(x) \text{ as long as } x > 1, \]

• So \(f(x) \) is in \(g \)'s upper-bound family, written

\[f(x) \in O(g(x)), \]

• …even though \(f(x) > g(x) \) everywhere.
Big Omega

- **Goal:** Specify bounding from below:

 \[g(x) = f'(x) \]

 \[M = 1 \]

 \[M = 1 \]

- Here, \(f'(x) \geq \frac{1}{2} g(x) \) as long as \(x > 1 \).

- So \(f'(x) \) is in \(g \)'s lower-bound family, written

 \[f'(x) \in \Omega(g(x)) \]

- ... even though \(f(x) < g(x) \) everywhere.

- In fact, we also have \(f'(x) \in O(g(x)) \) and \(f(x) \in \Omega(g(x)) \) and so we can also write

 \[f(x), f'(x) \in \Theta(g(x)). \]
Using the Notation

- Can use this order notation for any kind of real-valued function.
- We will use them to describe cost functions. Example:

```java
/** Find position of X in list L. Return -1 if not found */
int find (List L, Object X) {
    int c;
    for (c = 0; L != null; L = L.next, c += 1)
        if (X.equals (L.head)) return c;
    return -1;
}
```

- Choose representative operation: number of .equals tests.
- If \(N \) is length of \(L \), then loop does at most \(N \) tests: worst-case time is \(N \) tests.
- In fact, total # of instructions executed is roughly proportional to \(N \) in the worst case, so can also say worst-case time is \(O(N) \), regardless of units used to measure.
- Use \(N > M \) provision (in defn. of \(O(\cdot) \)) to handle empty list.
Why It Matters

- Computer scientists often talk as if constant factors didn’t matter at all, only the difference of $\Theta(N)$ vs. $\Theta(N^2)$.

- In reality they do, but we still have a point: at some point, constants get swamped.

<table>
<thead>
<tr>
<th>n</th>
<th>$16 \lg n$</th>
<th>\sqrt{n}</th>
<th>n</th>
<th>$n \lg n$</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>2.8</td>
<td>8</td>
<td>24</td>
<td>64</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>4,096</td>
<td>65,636</td>
</tr>
<tr>
<td>32</td>
<td>80</td>
<td>5.7</td>
<td>32</td>
<td>160</td>
<td>1024</td>
<td>32,768</td>
<td>4.2×10^9</td>
</tr>
<tr>
<td>64</td>
<td>96</td>
<td>8</td>
<td>64</td>
<td>384</td>
<td>4,096</td>
<td>262,144</td>
<td>1.8×10^{19}</td>
</tr>
<tr>
<td>128</td>
<td>112</td>
<td>11</td>
<td>128</td>
<td>896</td>
<td>16,384</td>
<td>2.1×10^9</td>
<td>3.4×10^{38}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>1,024</td>
<td>160</td>
<td>32</td>
<td>1,024</td>
<td>10,240</td>
<td>1.0×10^6</td>
<td>1.1×10^9</td>
<td>1.8×10^{308}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>2^{20}</td>
<td>320</td>
<td>1,024</td>
<td>1.0×10^6</td>
<td>2.1×10^7</td>
<td>1.1×10^{12}</td>
<td>1.2×10^{18}</td>
<td>$6.7 \times 10^{315,652}$</td>
</tr>
</tbody>
</table>
Careful!

- It’s also true that the worst-case time is $O(N^2)$, since $N \in O(N^2)$ also: Big-Oh bounds are loose.

- The worst-case time is $\Omega(N)$, since $N \in \Omega(N)$, but that does not mean that the loop always takes time N, or even $K \cdot N$ for some K.

- Instead, we are just saying something about the function that maps N into the largest possible time required to process an array of length N.

- To say as much as possible about our worst-case time, we should try to give a Θ bound: in this case, we can: $\Theta(N)$.

- But again, that still tells us nothing about best-case time, which happens when we find X at the beginning of the loop. Best-case time is $\Theta(1)$.
Effect of Nested Loops

• Nested loops often lead to polynomial bounds:
  ```java
  for (int i = 0; i < A.length; i += 1)
      for (int j = 0; j < A.length; j += 1)
          if (i != j && A[i] == A[j])
              return true;
  return false;
  ```

• Clearly, time is $O(N^2)$, where $N = A.length$. Worst-case time is $\Theta(N^2)$.

• Loop is inefficient though:
  ```java
  for (int i = 0; i < A.length; i += 1)
      for (int j = i+1; j < A.length; j += 1)
          if (A[i] == A[j]) return true;
  return false;
  ```

• Now worst-case time is proportional to
 $$N - 1 + N - 2 + \ldots + 1 = N(N - 1)/2 \in \Theta(N^2)$$
 (so asymptotic time unchanged by the constant factor).
Recursion and Recurrences: Fast Growth

- **Silly example of recursion:**

```java
/** True iff X is a substring of S */
boolean occurs (String S, String X) {
    if (S.equals (X)) return true;
    if (S.length () <= X.length () return false;
    return
        occurs (S.substring (1), X) ||
        occurs (S.substring (0, S.length ()-1), X);
}
```

- In the worst case, both recursive calls happen.

- Consider a fixed size for X, say N_0.

- Define $C(N)$ to be the worst-case cost of $\text{occurs}(S,X)$ for S of length N, measured in # of calls to occurs. Then

\[
C(N) = \begin{cases}
1, & \text{if } N \leq N_0, \\
2C(N - 1) & \text{if } N > N_0
\end{cases}
\]

- So $C(N)$ grows exponentially:

\[
C(N) = 2C(N - 1) = 2 \cdot 2C(N - 2) = \ldots = 2 \cdot 2 \cdot \ldots \cdot 2 \cdot 1 = 2^{N-N_0} \in \Theta(2^N)
\]
Binary Search: Slow Growth

/** True X iff is an element of S[L .. U]. Assumes
 * S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn (String X, String[] S, int L, int U) {
 if (L > U) return false;
 int M = (L+U)/2;
 int direct = X.compareTo (S[M]);
 if (direct < 0) return isIn (X, S, L, M-1);
 else if (direct > 0) return isIn (X, S, M+1, U);
 else return true;
}

• Here, worst-case time, $C(D)$, (as measured by # of string comparisons), depends on size $D = U - L + 1$.

• We eliminate $S[M]$ from consideration each time and look at half the rest. Assume $D = 2^k - 1$ for simplicity, so:

\[
C(D) = \begin{cases}
0, & \text{if } D \leq 0, \\
1 + C((D - 1)/2), & \text{if } D > 0.
\end{cases}
\]

\[
= 1 + 1 + \ldots + 1 + 0
\]

\[
= k = \lceil \log D \rceil \in \Theta(\log D)
\]
Another Typical Pattern: Merge Sort

List sort (List L) {
 if (L.length () < 2) return L;
 Split L into L0 and L1 of about equal size;
 L0 = sort (L0); L1 = sort (L1);
 return Merge of L0 and L1
}

• Assuming that size of L is \(N = 2^k \), worst-case cost function, \(C(N) \), counting just merge time (\(\propto \) # items merged):

\[
C(N) = \begin{cases}
 1, & \text{if } N < 2; \\
 2C(N/2) + N, & \text{if } N \geq 2.
\end{cases}
\]

\[
= 2(2C(N/4) + N/2) + N
\]
\[
= 4C(N/4) + N + N
\]
\[
= 8C(N/8) + N + N + N
\]
\[
= N \cdot 1 + \underbrace{N + N + \ldots + N}_{k=\lg N}
\]
\[
= N + N \lg N \in \Theta(N \lg N)
\]

• In general, \(\Theta(N \lg N) \) for arbitrary \(N \) (not just \(2^k \)).
Amortization: Expanding Vectors

• When using array for expanding sequence, best to double size of array to grow it. Here's why.

• If array is size \(s \), doubling its size and moving \(s \) elements to the new array takes time \(\propto 2s \).

• Cost of inserting \(N \) items into array, doubling size as needed, starting with array size 1:

<table>
<thead>
<tr>
<th>To Insert Item #</th>
<th>Resizing Cost</th>
<th>Cumulative Cost</th>
<th>Resizing Cost per Item</th>
<th>Array Size After Insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3 to 4</td>
<td>4</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>5 to 8</td>
<td>8</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
</tr>
<tr>
<td>(2^m + 1) to (2^{m+1})</td>
<td>(2^m+1)</td>
<td>(2^{m+2} - 2)</td>
<td>(\approx 2)</td>
<td>(2^{m+1})</td>
</tr>
</tbody>
</table>

• If we spread out (amortize) the cost of resizing, we average about 2 time units on each item: “amortized insertion time is 2 units.”

• So even though worst-case time for adding one element to array of \(N \) elements is \(2N \), time to add \(N \) elements is \(\Theta(N) \), not \(\Theta(N^2) \).