CS61B Lecture #26

Today: Hashing (Data Structures Chapter 7).

Next topic: Sorting (Data Structures Chapter 8).
Back to Simple Search: Hashing

• Linear search is OK for small data sets, bad for large.
• So linear search would be OK if we could rapidly narrow the search to a few items.
• Suppose that in constant time could put any item in our data set into a numbered bucket, where # buckets stays within a constant factor of # keys.
• Suppose also that buckets contain roughly equal numbers of keys.
• Then search would be constant time.
Hash functions

- To do this, must have way to convert key to bucket number: a hash function.

- Example:

 - $N = 200$ data items.
 - keys are longs, evenly spread over the range $0..2^{63} - 1$.
 - Want to keep maximum search to $L = 2$ items.
 - Use hash function $h(K) = K \mod M$, where $M = N/L = 100$ is the number of buckets: $0 \leq h(K) < M$.
 - So 100232, 433, and 10002332482 go into different buckets, but 10, 400210, and 210 all go into the same bucket.
External chaining

• Array of M buckets.
• Each bucket is a list of data items.

Not all buckets have same length, but average is $N/M = L$, the load factor.

To work well, hash function must avoid collisions: keys that “hash” to equal values.
Open Addressing

• Idea: Put one data item in each bucket.
• When there is a collision, and bucket is full, just use another.
• Various ways to do this:
 - Linear probes: If there is a collision at $h(K)$, try $h(K) + m$, $h(K) + 2m$, etc. (wrap around at end).
 - Quadratic probes: $h(K) + m$, $h(K) + m^2$, …
 - Double hashing: $h(K) + h'(K)$, $h(K) + 2h'(K)$, etc.
• Example: $h(K) = K \% M$, with $M = 10$, linear probes with $m = 1$.
 - Add 1, 2, 11, 3, 102, 9, 18, 108, 309 to empty table.

| 108 | 1 | 2 | 11 | 3 | 102 | 309 | 18 | 9 |

• Things can get slow, even when table is far from full.
• Lots of literature on this technique, but
• Personally, I just settle for external chaining.
Filling the Table

- To get (likely to be) constant-time lookup, need to keep #buckets within constant factor of #items.
- So resize table when load factor gets higher than some limit.
- In general, must *re-hash* all table items.
- Still, this operation constant time per item,
- So by doubling table size each time, get constant *amortized* time for insertion and lookup
- (Assuming, that is, that our hash function is good).
Hash Functions: Strings

- For String, "s_0s_1 \cdots s_{n-1}" want function that takes all characters and their positions into account.

- What’s wrong with $s_0 + s_1 + \ldots + s_{n-1}$?

- For strings, Java uses

 \[h(s) = s_0 \cdot 31^{n-1} + s_1 \cdot 31^{n-2} + \ldots + s_{n-1} \]

 computed modulo 2^{32} as in Java int arithmetic.

- To convert to a table index in $0..N-1$, compute $h(s) \% N$ (but don’t use table size that is multiple of 31!)

- Not as hard to compute as you might think; don’t even need multiplication!

```java
int r; r = 0;
for (int i = 0; i < s.length(); i += 1)
    r = (r << 5) - r + s.charAt(i);
```
Hash Functions: Other Data Structures I

- Lists (ArrayList, LinkedList, etc.) are analogous to strings: e.g., Java uses

  ```java
  hashCode = 1; Iterator i = list.iterator();
  while (i.hasNext()) {
    Object obj = i.next();
    hashCode =
      31*hashCode
    + (obj==null ? 0 : obj.hashCode());
  }
  ```

- Can limit time spent computing hash function by not looking at entire list. For example: look only at first few items (if dealing with a List or SortedSet).

- Causes more collisions, but does not cause equal things to go to different buckets.
Hash Functions: Other Data Structures II

- Recursively defined data structures ⇒ recursively defined hash functions.

- For example, on a binary tree, one can use something like

 \[
 \text{hash}(T): \\
 \quad \text{if } (T == \text{null}) \\
 \quad \quad \text{return 0;}
 \]
 \[
 \quad \text{else return someHashFunction } (T.\text{label }()) \\
 \quad \quad + 255 \times \text{hash}(T.\text{left }()) \\
 \quad \quad + 255 \times 255 \times \text{hash}(T.\text{right }());
 \]

- Can use address of object ("hash on identity") if distinct (!=) objects are never considered equal.

- But careful! Won't work for Strings, because .equals Strings could be in different buckets:

 String H = "Hello",
 S1 = H + ", world!",
 S2 = "Hello, world!";

- Here \text{S1.equals(S2)}, but \text{S1 != S2}.

What Java Provides

- In class `Object`, is function `hashCode()`.
- By default, returns address of `this`, or something similar.
- Can override it for your particular type.
- For reasons given on last slide, is overridden for type `String`, as well as many types in the Java library, like all kinds of `List`.
- The types `Hashtable`, `HashSet`, and `HashMap` use `hashCode` to give you fast look-up of objects.

```java
HashMap<KeyType,ValueType> map =
    new HashMap<KeyType,ValueType> (approximate size, load factor);

map.put (key, value);  // Map KEY -> VALUE.
// VALUE last mapped to by SOMEKEY.
... map.get (someKey)
    // VALUE last mapped to by SOMEKEY.
... map.containsKey (someKey)
    // Is SOMEKEY mapped?
... map.keySet ()  // All keys in MAP (a Set)
```
Characteristics

- Assuming good hash function, add, lookup, deletion take $\Theta(1)$ time, amortized.

- Good for cases where one looks up equal keys.

- Usually bad for range queries: "Give me every name between Martin and Napoli." [Why?]

- But sometimes OK, if hash function is monotonic (i.e., when key $k_1 > k_2$, then $h(k_1) \geq h(k_2)$). For example,

 - Items are time-stamped records; key is the time.
 - Hashing function is to have one bucket for every hour.

- Hashing is probably not a good idea for small sets that you rapidly create and discard [why?]
Comparing Search Structures

Here, \(N \) is \#items, \(k \) is \#answers to query.

<table>
<thead>
<tr>
<th>Function</th>
<th>Unordered List</th>
<th>Sorted Array</th>
<th>Bushy Search Tree</th>
<th>"Good" Hash Table</th>
<th>Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>(\Theta(N))</td>
<td>(\Theta(lg , N))</td>
<td>(\Theta(lg , N))</td>
<td>(\Theta(1))</td>
<td>(\Theta(N))</td>
</tr>
<tr>
<td>add</td>
<td>(\Theta(1))</td>
<td>(\Theta(N))</td>
<td>(\Theta(lg , N))</td>
<td>(\Theta(1))</td>
<td>(\Theta(lg , N))</td>
</tr>
<tr>
<td>range query</td>
<td>(\Theta(N))</td>
<td>(\Theta(k + lg , N))</td>
<td>(\Theta(k + lg , N))</td>
<td>(\Theta(N))</td>
<td>(\Theta(N))</td>
</tr>
<tr>
<td>find largest</td>
<td>(\Theta(N))</td>
<td>(\Theta(1))</td>
<td>(\Theta(lg , N))</td>
<td>(\Theta(N))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>remove largest</td>
<td>(\Theta(N))</td>
<td>(\Theta(1))</td>
<td>(\Theta(lg , N))</td>
<td>(\Theta(N))</td>
<td>(\Theta(lg , N))</td>
</tr>
</tbody>
</table>