CS61B Lecture #27

Today:
- Sorting algorithms: why?
- Insertion, Shell’s, Heap, Merge sorts

Readings for Today:
DS(IJ), Chapter 8

Purposes of Sorting
- Sorting supports searching
- Binary search standard example
- Also supports other kinds of search:
 - Are there two equal items in this set?
 - Are there two items in this set that both have the same value for property X?
 - What are my nearest neighbors?
- Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).

Some Definitions
- A sort is a permutation (re-arrangement) of a sequence of elements that brings them into order, according to some total order. A total order, \(\leq \), is:
 - Total: \(x \leq y \text{ or } y \leq x \) for all \(x, y \).
 - Reflexive: \(x \leq x \).
 - Antisymmetric: \(x \leq y \text{ and } y \leq x \) iff \(x = y \).
 - Transitive: \(x \leq y \text{ and } y \leq z \) implies \(x \leq z \).
- However, our orderings may allow unequal items to be equivalent:
 - E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first.
 - A sort that does not change the relative order of equivalent entries is called stable.

Classifications
- Internal sorts keep all data in primary memory
- External sorts process large amounts of data in batches, keeping what won’t fit in secondary storage (in the old days, tapes).
- Comparison-based sorting assumes only thing we know about keys is order
- Radix sorting uses more information about key structure.
- Insertion sorting works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
- Selection sorting works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.
Sorting by Insertion

- Simple idea:
 - starting with empty sequence of outputs.
 - add each item from input, inserting into output sequence at right point.
- Very simple, good for small sets of data.
- With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where k is # of outputs so far.
- So gives us $O(N^2)$ algorithm. Can we say more?

Inversions

- Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:
  ```java
  for (int i = 1; i < A.length; i += 1) {
    int j;
    Object x = A[i];
    for (j = i-1; j >= 0; j -= 1) {
      if (A[j].compareTo(x) <= 0) /* (1) */
        break;
    }
    A[j+1] = x;
  }
  ```
 #times (1) executes \approx how far x must move.
 - If all items within K of proper places, then takes $O(KN)$ operations.
 - Thus good for any amount of nearly sorted data.
- One measure of unsortedness: # of inversions: pairs that are out of order (= 0 when sorted, $N(N−1)/2$ when reversed).
- Each step of j decreases inversions by 1.

Shell's Sort

Idea: Improve insertion sort by first sorting distant elements:
- First sort subsequences of elements $2^k − 1$ apart:
 - sort items #0, $2^k − 1$, 2($2^k − 1$), 3($2^k − 1$), ..., then
 - sort items #1, 1 + $2^k − 1$, 1 + 2($2^k − 1$), 1 + 3($2^k − 1$), ..., then
 - sort items #2, 2 + $2^k − 1$, 2 + 2($2^k − 1$), 2 + 3($2^k − 1$), ..., then
 - etc.
 - sort items #2^k — 2, 2($2^k − 1$) — 1, 3($2^k − 1$) — 1, ...,
 - Each time an item moves, can reduce #inversions by as much as $2^k + 1$.
- Now sort subsequences of elements $2^{k−1} − 1$ apart:
 - sort items #0, $2^{k−1} − 1$, 2($2^{k−1} − 1$), 3($2^{k−1} − 1$), ..., then
 - sort items #1, 1 + $2^{k−1} − 1$, 1 + 2($2^{k−1} − 1$), 1 + 3($2^{k−1} − 1$), ...,
 -
- End at plain insertion sort ($2^0 = 1$ apart), but with most inversions gone.
- Sort is $\Theta(N^{1.5})$ (take CS170 for why!).

Example of Shell's Sort

<table>
<thead>
<tr>
<th>#I</th>
<th>#C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

I: Inversions left.
C: Comparisons needed to sort subsequences.
Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- Gives $O(N \log N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

```
original: 19 0 -1 7 23 2 42
heapified: 23 7 19 0 2 42 19 7 2 -1 0 23 42
```

Illustration of Internal Merge Sort

$L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)$

```
0: 0 elements processed
1: 0: (9)
2: 1: (9, 15)
3: 2 elements processed 3 elements processed
0: 0: (5)
1: 1: (9, 15)
2: 2: 3 elements processed
3: 3

1 element processed
```

```
0: 0: (0, 6)
1: 1: (3, 5, 9, 15)
2: 2: 4 elements processed 6 elements processed
3: 3: (1, 0, 3, 5, 6, 9, 10, 15)
```

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- Already seen analysis: $\Theta(N \log N)$.
- **Good for external sorting:**
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
 - Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage.
- For internal sorting, can use binomial comb to orchestrate: