Announcements:
• We'll be running a preliminary test run for Project #2 on Monday night.

Today:
- Sorting, continued
 - Quicksort
 - Selection
 - Distribution counting
 - Radix sorts

Next topic readings: Data Structures, Chapter 9.

Quicksort: Speed through Probability

Idea:
• Partition data into pieces: everything $> a$ pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
• Repeat recursively on the high and low pieces.
• For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
• Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, #inversions is, too.
• Have to choose pivot well. E.g.: median of first, last and middle items of sequence.

Example of Quicksort
• In this example, we continue until pieces are size ≤ 4.
• Pivots for next step are starred. Arrange to move pivot to dividing line each time.
• Last step is insertion sort.

\[
\begin{array}{cccccccccccc}
16 & 10 & 13 & 18 & -4 & -7 & 12 & -5 & 19 & 15 & 0 & 22 & 9 & 34 \\
-4 & -5 & -7 & -1 & 18 & 13 & 12 & 10 & 19 & 15 & 0 & 22 & 9 & 34 \\
-4 & -5 & -7 & -1 & 15 & 13 & 2 & 10 & 16 & 19 & 22 & 9 & 34 & 18 \\
-4 & -5 & -7 & -1 & 10 & 0 & 12 & 19 & 13 & 16 & 18 & 19 & 22 & 9 & 34 & 22
\end{array}
\]
• Now everything is "close to" right, so just do insertion sort:

\[
\begin{array}{cccccccccccc}
-7 & 5 & -4 & -1 & 0 & 10 & 12 & 13 & 15 & 16 & 18 & 19 & 22 & 9 & 34
\end{array}
\]

Performance of Quicksort
• Probabilistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \log N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \log N)$ in best case, so insertion sort better for nearly ordered input sets.
• Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!
Quick Selection

The Selection Problem: for given \(k \), find \(k \)th smallest element in data.

- Obvious method: sort, select element \(#k \), time \(\Theta(N \lg N) \).
- If \(k \leq \) some constant, can easily do in \(\Theta(N) \) time:
 - Go through array, keep smallest \(k \) items.
- Get probably \(\Theta(N) \) time for all \(k \) by adapting quicksort:
 - Partition around some pivot, \(p \), as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index \(m \), all elements \(\leq \) pivot have indicies \(\leq m \).
 - If \(m = k \), you're done: \(p \) is answer.
 - If \(m > k \), recursively select \(k \)th from left half of sequence.
 - If \(m < k \), recursively select \((k - m - 1) \)th from right half of sequence.

Selection Example

Problem: Find just item \#10 in the sorted version of array:

Initial contents:

```
51 13 21 4 b 7 4 49 10 0 59 0 13 2 39 11 46 31
```

Looking for \#10 to left of pivot 40:

```
13 13 21 4 b 7 4 49 10 0 59 0 13 2 39 11 46 31
```

Looking for \#6 to right of pivot 4:

```
-4 0 2 4 37 13 11 10 59 2 0 40 59 51 49 46 31
```

Looking for \#1 to right of pivot 31:

```
-4 0 2 4 37 13 11 10 31 39 40 59 51 49 46 31
```

Just two elements; just sort and return \#1:

```
-4 0 2 4 37 13 11 10 31 39 40 59 51 49 46 9
```

Result: 39

Selection Performance

- For this algorithm, if \(m \) roughly in middle each time, cost is

\[
C(N) = \begin{cases}
1, & \text{if } N = 1; \\
N + C(N/2), & \text{otherwise.}
\end{cases}
\]

\[
= N + N/2 + \ldots + 1 \\
= 2N - 1 \in \Theta(N)
\]

- But in worst case, get \(\Theta(N^2) \), as for quicksort.
- By another, non-obvious algorithm, can get \(\Theta(N) \) worst-case time for all \(k \) (take CS170).

Better than \(N \lg N \)?

- Can prove that if all you can do to keys is compare them then sorting must take \(\Omega(N \lg N) \).
- Basic idea: there are \(N! \) possible ways the input data could be scrambled.
- Therefore, your program must be prepared to do \(N! \) different combinations of move operations.
- Therefore, there must be \(N! \) possible combinations of outcomes of all the if tests in your program (we're assuming that comparisons are 2-way).
- Since each if test goes two ways, number of possible different outcomes for \(k \) if tests is \(2^k \).
- Thus, need enough tests so that \(2^k > N! \), which means \(k \in \Omega(\lg N!) \).
- Using Stirling's approximation,

\[
m! \in \sqrt{2\pi n} (\frac{n}{e})^n \left(1 + \Theta\left(\frac{1}{n}\right)\right),
\]

this tells us that

\[
k \in \Omega(N \lg N).
\]
Beyond Comparison: Distribution Counting

- But suppose can do more than compare keys?
- For example, how can we sort a set of N integer keys whose values range from 0 to kN, for some small constant k?
- One technique: count the number of items < 1, < 2, etc.
- If $M_p = \#$items with value < p, then in sorted order, the jth item with value p must be $#M_p + j$.
- Gives linear-time algorithm.

Distribution Counting Example

- Suppose all items are between 0 and 9 as in this example:

```
7 0 4 0 9 1 9 5 3
3 1 2 2 1 1 3 0 3
```

```
Counts
0 1 2 3 4 5 6 7 8 9

Running sum
<0 <1 <2 <3 <4 <5 <6 <7 <8 <9
```

- "Counts" line gives # occurrences of each key.
- "Running sum" gives cumulative count of keys ≤ each value...
- ...which tells us where to put each key:
- The first instance of key k goes into slot m, where m is the number of key instances that are < k.

Radix Sort

Idea: Sort keys one character at a time.
- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

```
Initial: set, cat, cad, con, bat, can, be, let, bet
```

```
Pass 1
(by char #2) be cad can set
bet let bat
```

```
Pass 2
(by char #1) be cad can set
bet let bat
```

```
Pass 3
(by char #0) be cad can set
bet let bat
```

```
A
+ set, cat, cad, con, bat, can, be, let, bet | posn
+ bat, be, bet / cat, cad, con, can / let / set
bat / + be, bet / cat, cad, con, can / let / set
bat / be / bet / + cat, cad, con, can / let / set
bat / be / bet / * cat, cad, con / can / let / set
bat / be / bet / / cat, cad, con / can / / set
bat / be / bet / / / cat, cad, con / can / / set
```

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists
Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of $\#$ records.
- How to compare?
- To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- So $N \lg N$ comparisons really means $N(\lg N)^2$ operations.
- While radix sort takes $B = N \lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

 $$\Theta(N + N \lg N) = \Theta(N \lg N)$$

Summary

- Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
- Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.