CS61B Lecture #29

Announcements:
- We’ll be running a preliminary test run for Project #2 on Monday night.

Today: Sorting, continued
- Quicksort
- Selection
- Distribution counting
- Radix sorts

Next topic readings: Data Structures, Chapter 9.
Quicksort: Speed through Probability

Idea:

• *Partition* data into pieces: everything > a *pivot* value at the high end of the sequence to be sorted, and everything ≤ on the low end.

• Repeat recursively on the high and low pieces.

• For speed, stop when pieces are “small enough” and do insertion sort on the whole thing.

• Reason: insertion sort has low constant factors. By design, no item will move out of its piece [why?], so when pieces are small, #inversions is, too.

• Have to choose pivot well. E.g.: *median* of first, last and middle items of sequence.
Example of Quicksort

- In this example, we continue until pieces are size ≤ 4.
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

```
16 10 13 18 -4 -7 12 -5 19 15 0 22 29 34 1*
```

```
-4 -5 -7 -1 18 13 12 10 19 15 0 22 29 34 16*
```

```
-4 -5 -7 -1 15 13 12 10 19 0 16 19* 22 29 34 18
```

```
-4 -5 -7 -1 10 0 12 15 13 16 18 19 29 34 22
```

- Now everything is “close to” right, so just do insertion sort:

```
-7 -5 -4 -1 0 10 12 13 15 16 18 19 22 29 34
```
Performance of Quicksort

• Probabilistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.

• Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!
Quick Selection

The Selection Problem: for given k, find k^{th} smallest element in data.

- Obvious method: sort, select element $\#k$, time $\Theta(N \lg N)$.
- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
 - If $m = k$, you're done: p is answer.
 - If $m > k$, recursively select k^{th} from left half of sequence.
 - If $m < k$, recursively select $(k - m - 1)^{th}$ from right half of sequence.
Problem: Find just item #10 in the sorted version of array:

Initial contents:

<table>
<thead>
<tr>
<th>51</th>
<th>60</th>
<th>21</th>
<th>-4</th>
<th>37</th>
<th>4</th>
<th>49</th>
<th>10*</th>
<th>40</th>
<th>59</th>
<th>0</th>
<th>13</th>
<th>2</th>
<th>39</th>
<th>11</th>
<th>46</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Looking for #10 to left of pivot 40:

<table>
<thead>
<tr>
<th>13</th>
<th>31</th>
<th>21</th>
<th>-4</th>
<th>37</th>
<th>4*</th>
<th>11</th>
<th>10</th>
<th>39</th>
<th>2</th>
<th>0</th>
<th>40</th>
<th>59</th>
<th>51</th>
<th>49</th>
<th>46</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Looking for #6 to right of pivot 4:

<table>
<thead>
<tr>
<th>-4</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>37</th>
<th>13</th>
<th>11</th>
<th>10</th>
<th>39</th>
<th>21</th>
<th>31</th>
<th>40</th>
<th>59</th>
<th>51</th>
<th>49</th>
<th>46</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Looking for #1 to right of pivot 31:

<table>
<thead>
<tr>
<th>-4</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>21</th>
<th>13</th>
<th>11</th>
<th>10</th>
<th>31</th>
<th>39</th>
<th>37</th>
<th>40</th>
<th>59</th>
<th>51</th>
<th>49</th>
<th>46</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Just two elements; just sort and return #1:

<table>
<thead>
<tr>
<th>-4</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>21</th>
<th>13</th>
<th>11</th>
<th>10</th>
<th>31</th>
<th>37</th>
<th>39</th>
<th>40</th>
<th>59</th>
<th>51</th>
<th>49</th>
<th>46</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Result: 39
Selection Performance

• For this algorithm, if \(m \) roughly in middle each time, cost is

\[
C(N) = \begin{cases}
1, & \text{if } N = 1, \\
N + C(N/2), & \text{otherwise.}
\end{cases}
\]

\[
= N + N/2 + \ldots + 1
\]

\[
= 2N - 1 \in \Theta(N)
\]

• But in worst case, get \(\Theta(N^2) \), as for quicksort.

• By another, non-obvious algorithm, can get \(\Theta(N) \) worst-case time for all \(k \) (take CS170).
Better than $N \lg N$?

- Can prove that *if all you can do to keys is compare them* then sorting must take $\Omega(N \lg N)$.
- Basic idea: there are $N!$ possible ways the input data could be scrambled.
- Therefore, your program must be prepared to do $N!$ different combinations of move operations.
- Therefore, there must be $N!$ possible combinations of outcomes of all the if tests in your program (we're assuming that comparisons are 2-way).
- Since each if test goes two ways, number of possible different outcomes for k if tests is 2^k.
- Thus, need enough tests so that $2^k > N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

 $$m! \in \sqrt{2\pi m} \left(\frac{m}{e}\right)^m \left(1 + \Theta\left(\frac{1}{m}\right)\right),$$

 this tells us that

 $$k \in \Omega(N \lg N).$$
Beyond Comparison: Distribution Counting

- But suppose can do more than compare keys?
- For example, how can we sort a set of N integer keys whose values range from 0 to kN, for some small constant k?
- One technique: count the number of items $< 1, < 2$, etc.
- If $M_p = \#\text{items with value} < p$, then in sorted order, the j^{th} item with value p must be $\#M_p + j$.
- Gives linear-time algorithm.
Distribution Counting Example

- Suppose all items are between 0 and 9 as in this example:

 7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

 3 3 1 2 2 1 1 3 0 3 Counts
 0 1 2 3 4 5 6 7 8 9 Running sum

 < 0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9

 0 0 0 1 1 1 2 3 3 4 4 5 6 7 7 7 9 9 9
 0 3 6 9 11 12 13 16 16

- “Counts” line gives # occurrences of each key.
- “Running sum” gives cumulative count of keys ≤ each value...
- ...which tells us where to put each key:
- The first instance of key \(k \) goes into slot \(m \), where \(m \) is the number of key instances that are < \(k \).
Radix Sort

Idea: Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

\[
\begin{array}{llll}
\text{Pass 1} & \\
(\text{by char #2}) & \text{bet} & \text{let} & \text{bat} \\
(\text{by char #1}) & \text{cad} & \text{con} & \text{set} \\
\text{Pass 2} & \text{bat} & \text{bet} & \text{cat} & \text{let} & \text{set} & \text{con} \\
(\text{by char #1}) & \text{cad} & \text{be} & \text{con} \\
(\text{by char #0}) & \text{be}, \text{cad}, \text{con}, \text{can}, \text{set}, \text{cat}, \text{bat}, \text{let}, \text{bet} & \text{cad}, \text{can}, \text{cat}, \text{bat}, \text{be}, \text{set}, \text{let}, \text{bet}, \text{con} \\
\end{array}
\]
MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

<table>
<thead>
<tr>
<th>A</th>
<th>posn</th>
</tr>
</thead>
<tbody>
<tr>
<td>* set, cat, cad, con, bat, can, be, let, bet</td>
<td>0</td>
</tr>
<tr>
<td>* bat, be, bet / cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / * be, bet / cat, cad, con, can / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / * cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / be / bet / * cat, cad, can / con / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / cad / can / cat / con / let / set</td>
<td></td>
</tr>
</tbody>
</table>
Performance of Radix Sort

• Radix sort takes $\Theta(B)$ time where B is total size of the key data.
• Have measured other sorts as function of #records.
• How to compare?
• To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
• Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
• So $N \lg N$ comparisons really means $N(\lg N)^2$ operations.
• While radix sort takes $B = N \lg N$ time.
• On the other hand, must work to get good constant factors with radix sort.
And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

• Need balance to really use for sorting [next topic].
• Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$
Summary

• Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.

• Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.

• Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.

• Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.

• Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.