Why Graphs?

- For expressing non-hierarchically related items
- Examples:
 - Networks: pipelines, roads, assignment problems
 - Representing processes: flow charts, Markov models
 - Representing partial orderings: PERT charts, makefiles

Some Terminology

- A graph consists of
 - A set of nodes (aka vertices)
 - A set of edges: pairs of nodes.
 - Nodes with an edge between are adjacent.
 - Depending on problem, nodes or edges may have labels (or weights)
- Typically call node set \(V = \{v_0, \ldots \} \), and edge set \(E \).
- If the edges have an order (first, second), they are directed edges, and we have a directed graph (digraph), otherwise an undirected graph.
- Edges are incident to their nodes.
- Directed edges exit one node and enter the next.
- A cycle is a path without repeated edges leading from a node back to itself (following arrows if directed).
- A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Directed Acyclic Graph—DAG.

Some Pictures

- Directed Acyclic:
 - Directed edges
 - No cycles

- Cyclic:
 - Directed edges
 - One cycle

- Undirected
 - Undirected edges
 - No cycles

- With Edge Labels:
 - Directed edges with labels
 - One cycle with labels
Trees are Graphs

- A graph is connected if there is a (possibly directed) path between every pair of nodes.
- That is, if one node of the pair is reachable from the other.
- A DAG is a (rooted) tree iff connected, and every node but the root has exactly one parent.
- A connected, acyclic, undirected graph is also called a free tree. Free: we're free to pick the root; e.g.,

More Examples

- Edge = some relationship
 potstickers ✿ eats ✿ John ✿ loves ✿ Mary

- Edge = next state might be (with probability)
 hat ✿ 0.4 ✿ the ✿ 0.6 ✿ cat ✿ 0.4 ✿ in ✿ 0.1 ✿ bed

- Edge = next state in state machine, label is triggering input. (Start at s. Being in state 4 means “there is a substring ‘001’ somewhere in the input”.)

Examples of Use

- Edge = Connecting road, with length.
 Detroit ✿ 200 ✿ Chicago

- Edge = Must be completed before; Node label = time to complete.
 Eat ✿ 1 hr ✿ Sleep ✿ 8 hrs

- Edge = Begat
 Martin ✿ George

Representation

- Often useful to number the nodes, and use the numbers in edges.
- Edge list representation: each node contains some kind of list (e.g., linked list or array) of its successors (and possibly predecessors).

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Edge sets: Collection of all edges. For graph above:
 \{(1, 2), (1, 3), (2, 3)\}

- Adjacency matrix: Represent connection with matrix entry:
Traversing a Graph

- Many algorithms on graphs depend on traversing all or some nodes.
- Can’t quite use recursion because of cycles.
- Even in acyclic graphs, can get combinatorial explosions:

Treat 0 as the root and do recursive traversal down the two edges out of each node: \(\Theta(2^N) \) operations!

- So typically try to visit each node constant # of times (e.g., once).

General Graph Traversal Algorithm

```java
COLLECTION OF VERTICES fringe;
fringe = INITIAL_COLLECTION;
while (! fringe.isEmpty()) {
    Vertex v = fringe.REMOVE.HIGHEST.PRIORITY.ITEM();
    if (! MARKED(v)) {
        MARK(v);
        VISIT(v);
        For each edge (v,w) {
            if (NEEDS_PROCESSING(w))
                Add w to fringe;
        }
    }
}
```

Replace COLLECTION_OF_VERTICES, INITIAL_COLLECTION, etc. with various types, expressions, or methods to different graph algorithms.

Example: Depth-First Traversal

Problem: Visit every node reachable from \(v \) once, visiting nodes further from start first.

```java
Stack<Vertex> fringe;
fringe = stack containing \{v\};
while (! fringe.isEmpty()) {
    Vertex v = fringe.pop();
    if (! marked(v)) {
        mark(v);
        VISIT(v);
        For each edge (v,w) {
            if (! marked(w))
                fringe.push(w);
        }
    }
}
```

Depth-First Traversal Illustrated

Marked:

Fringe:

[a] [b,d] [c,e,d] [d,f,e,d]
Topological Sorting

Problem: Given a DAG, find a linear order of nodes consistent with the edges.

- That is, order the nodes \(v_0, v_1, \ldots \) such that \(v_k \) is never reachable from \(v_{k'} \) if \(k' > k \).

- Gmake does this. Also PERT charts.

Set\<Vertex\> fringe;
fringe = set of all nodes with no predecessors;
while (! fringe.isEmpty()) {
 Vertex v = fringe.removeOne();
 add v to end of result list;
 For each edge \((v,w)\) {
 decrease predecessor count of \(w \);
 if (predecessor count of \(w \) == 0) {
 fringe.add (w);
 }
 }
}

Topological Sort in Action

Output: \([\]\)
\([A]\)
\([A,C]\)
\([A,C,B]\)
\([A,C,B,F]\)
\([A,C,B,F,D]\)
\([A,C,B,F,D,E,G,H]\)

Example

```
PriorityQueue<Vertex> fringe;
For each node v { v.dist() = \( \infty \); v.back() = null; }

s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
    Vertex v = fringe.removeFirst();
    For each edge \((v,w)\) {
        if (v.dist() + weight(v,w) < w.dist())
            { w.dist() = v.dist() + weight(v,w); w.back() = v; }
    }
}
```

Shortest Paths: Dijkstra's Algorithm

Problem: Given a graph (directed or undirected) with non-negative edge weights, compute shortest paths from given source node, \(s \), to all nodes.

- "Shortest" = sum of weights along path is smallest.

- For each node, keep estimated distance from \(s \), \(\ldots \)
- \(\ldots \) and of preceding node in shortest path from \(s \).

Add all vertices to fringe;
While (! fringe.isEmpty()) {
 Vertex v = fringe.removeFirst();
 For each edge \((v,w)\) {
 if (v.dist() + weight(v,w) < w.dist())
 { w.dist() = v.dist() + weight(v,w); w.back() = v; }
 }
}