CS61B Lecture #39

- **Today**: Minimum spanning trees, recursive graph algorithms, union-find.

Minimum Spanning Trees

- **Problem**: Given a set of places and distances between them (assume always positive), find a set of connecting roads of minimum total length that allows travel between any two.

- The routes you get will not necessarily be shortest paths.

- Easy to see that such a set of connecting roads and places must form a tree, because removing one road in a cycle still allows all to be reached.
Minimum Spanning Trees by Prim's Algorithm

• Idea is to grow a tree starting from an arbitrary node.
• At each step, add the shortest edge connecting some node already in the tree to one that isn't yet.
• Why must this work?

PriorityQueue fringe;
For each node v { v.dist() = ∞; v.parent() = null; }
Choose an arbitrary starting node, s;
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
 Vertex v = fringe.removeFirst ();
 For each edge (v,w) {
 if (w ∈ fringe && weight(v,w) < w.dist())
 { w.dist() = weight (v, w); w.parent() = v; }
 }
}

Last modified: Tue Dec 4 19:14:47 2007
Minimum Spanning Trees by Prim’s Algorithm

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn’t yet.
- Why must this work?

PriorityQueue fringe;
For each node \(v \) { \(v\text{.dist()} = \infty; \ v\text{.parent()} = \text{null}; \}

Choose an arbitrary starting node, \(s \);
\(s\text{.dist()} = 0; \)
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
 Vertex \(v = \text{fringe.removeFirst}() \);
 For each edge \((v,w) \) {
 if \((w \in \text{fringe} && \text{weight}(v,w) < w\text{.dist()}) \)
 { \(w\text{.dist()} = \text{weight} (v, w); \ w\text{.parent()} = v; \}
 }
}
Minimum Spanning Trees by Prim’s Algorithm

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn’t yet.
- Why must this work?

```
PriorityQueue fringe;

For each node v { v.dist() = ∞; v.parent() = null; }

Choose an arbitrary starting node, s;

s.dist() = 0;

fringe = priority queue ordered by smallest .dist();

add all vertices to fringe;

while (! fringe.isEmpty()) {
    Vertex v = fringe.removeFirst();

    For each edge (v, w) {
        if (w ∈ fringe && weight(v, w) < w.dist())
            { w.dist() = weight (v, w); w.parent() = v; }
    }
}
```
Minimum Spanning Trees by Prim's Algorithm

• Idea is to grow a tree starting from an arbitrary node.
• At each step, add the shortest edge connecting some node already in the tree to one that isn't yet.
• Why must this work?

PriorityQueue fringe;
For each node v { v.dist() = ∞; v.parent() = null; }
Choose an arbitrary starting node, s;
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
 Vertex v = fringe.removeFirst ();
 For each edge (v,w) {
 if (w ∈ fringe && weight(v,w) < w.dist())
 { w.dist() = weight (v, w); w.parent() = v; }
 }
}
Minimum Spanning Trees by Prim’s Algorithm

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn’t yet.
- Why must this work?

```java
PriorityQueue fringe;
For each node v { v.dist() = ∞; v.parent() = null; }
Choose an arbitrary starting node, s;
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
    Vertex v = fringe.removeFirst();
    For each edge (v, w) {
        if (w ∈ fringe && weight(v, w) < w.dist())
            { w.dist() = weight(v, w); w.parent() = v; }
    }
}
```
Minimum Spanning Trees by Prim’s Algorithm

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn’t yet.
- Why must this work?

```java
PriorityQueue fringe;
For each node v { v.dist() = \infty; v.parent() = null; }
Choose an arbitrary starting node, s;
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
    Vertex v = fringe.removeFirst();
    For each edge (v,w) {
        if (w ∈ fringe && weight(v,w) < w.dist())
            { w.dist() = weight (v, w); w.parent() = v; }
    }
}
```

Last modified: Tue Dec 4 19:14:47 2007 CS61B: Lecture #39
Minimum Spanning Trees by Prim’s Algorithm

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn’t yet.
- Why must this work?

```java
PriorityQueue fringe;
For each node v { v.dist() = ∞; v.parent() = null; }
Choose an arbitrary starting node, s;
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
    Vertex v = fringe.removeFirst();
    For each edge (v,w) {
        if (w ∈ fringe && weight(v,w) < w.dist())
            { w.dist() = weight (v, w); w.parent() = v; }
    }
}
```

![Graph example](attachment:graph.png)
Minimum Spanning Trees by Prim’s Algorithm

- Idea is to grow a tree starting from an arbitrary node.
- At each step, add the shortest edge connecting some node already in the tree to one that isn’t yet.
- Why must this work?

```
PriorityQueue fringe;
For each node v { v.dist() = ∞; v.parent() = null; }
Choose an arbitrary starting node, s;
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
    Vertex v = fringe.removeFirst ();
    For each edge (v,w) {
        if (w ∈ fringe && weight(v,w) < w.dist())
            { w.dist() = weight (v, w); w.parent() = v; }
    }
}
```

![Graph example]

Last modified: Tue Dec 4 19:14:47 2007
Minimum Spanning Trees by Prim's Algorithm

• Idea is to grow a tree starting from an arbitrary node.

• At each step, add the shortest edge connecting some node already in the tree to one that isn't yet.

• Why must this work?

```
PriorityQueue fringe;
For each node v { v.dist() = ∞; v.parent() = null; }
Choose an arbitrary starting node, s;
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (!fringe.isEmpty()) {
    Vertex v = fringe.removeFirst();
    For each edge (v,w) {
        if (w ∈ fringe && weight(v,w) < w.dist())
            { w.dist() = weight (v, w); w.parent() = v; }
    }
}
```

Last modified: Tue Dec 4 19:14:47 2007
Minimum Spanning Trees by Kruskal's Algorithm

• Observation: the shortest edge in a graph can always be part of a minimum spanning tree.

• In fact, if we have a bunch of subtrees of a MST, then the shortest edge that connects two of them can be part of a MST, combining the two subtrees into a bigger one.

• So,…

Create one (trivial) subtree for each node in the graph;
MST = {};

for each edge (v,w), in increasing order of weight {
 if ((v,w) connects two different subtrees) {
 Add (v,w) to MST;
 Combine the two subtrees into one;
 }
}
Recursive Depth-First Traversal

- Previously, we saw an iterative way to do depth-first traversal of a graph from a particular node.
- We are often interested in traversing all nodes of a graph, so we can repeat the procedure as long as there are unmarked nodes.
- Recursive solution is also simple:

```c
void traverse (Graph G) {
    for (v ∈ nodes of G) {
        traverse (G, v);
    }
}

void traverse (Graph G, Node v) {
    if (v is unmarked) {
        mark (v);
        visit v;
        for (Edge (v, w) ∈ G)
            traverse (G, w);
    }
}
```
Another Take on Topological Sort

- Observation: if we do a depth-first traversal on a DAG whose edges are reversed, and execute the recursive traverse procedure, we finish executing traverse(G, v) in proper topologically sorted order.

```plaintext
topologicalSort (Graph G) {
    for (v ∈ nodes of G) {
        traverse (G, v);
    }
}

traverse (Graph G, Node v) {
    if (v is unmarked) {
        mark (v);
        for (Edge (w, v) ∈ G)
            traverse (G, w);
        add v to the result list;
    }
}
```
Union Find

• Kruskal’s algorithm required that we have a set of sets of nodes with two operations:
 - *Find* which of the sets a given node belongs to.
 - Replace two sets with their union, reassigning all the nodes in the two original sets to this union.

• Obvious thing to do is to store a set number in each node, making *finds* fast.

• Union requires changing the set number in one of the two sets being merged; the smaller is better choice.

• This means an individual union can take $\Theta(N)$ time.

• Can union be fast?
A Clever Trick

- Let's choose to represent a set of nodes by one arbitrary representative node in that set.
- Let every node contain a pointer to another node in the same set.
- Arrange for each pointer to represent the parent of a node in a tree that has the representative node as its root.
- To find what set a node is in, follow parent pointers.
- To union two such trees, make one root point to the other (choose the root of the higher tree as the union representative).
Path Compression

- This makes unioning really fast, but the find operation potentially slow ($\Omega(\lg N)$).
- So use the following trick: whenever we do a find operation, compress the path to the root, so that subsequent finds will be faster.
- That is, make each of the nodes in the path point directly to the root.
- Now union is very fast, and sequence of unions and finds each have very, very nearly constant amortized time.
- Example: find 'g' in last tree (result of compression on right):

[Diagram showing before and after compression]