CS61B Lecture #37	Minimum Spanning Trees by Prim's Algorithm	
• Today: Minimum spanning trees, recursive graph algorithms, union- find. Minimum Spanning Trees	 Idea is to grow a tree starting from an arbitrary node. 	
	 At each step, add the shortest edge connecting some node already in the tree to one that isn't yet. 	
	• Why must this work?	
 Problem: Given a set of places and distances between them (assume always positive), find a set of connecting roads of minimum total length that allows travel between any two. 	<pre>PriorityQueue fringe; For each node v { v.dist() = ∞; v.parent() = null; } Choose an arbitrary starting node, s; s.dist() = 0; fringe = priority queue ordered by smallest .dist();</pre>	
 The routes you get will not necessarily be shortest paths. 	add all vertices to fringe;	2
• Easy to see that such a set of connecting roads and places must form a tree, because removing one road in a cycle still allows all to be reached.	<pre>while (! fringe.isEmpty()) { Vertex v = fringe.removeFirst (); For each edge (v,w) { if (w ∈ fringe && weight(v,w) < w.dist()) { w.dist() = weight (v, w); w.parent() = v; } } } }</pre>	
Last modified: Sun Nov 23 14:30:34 2008 CS61B: Lecture #37 1	Last modified: Sun Nov 23 14:30:34 2008 C561B: Lecture #37 2	
Minimum Spanning Trees by Kruskal's Algorithm	Recursive Depth-First Traversal	
 Observation: the shortest edge in a graph can always be part of a minimum spanning tree. 	 Previously, we saw an iterative way to do depth-first traversal of a graph from a particular node. 	
 In fact, if we have a bunch of subtrees of a MST, then the shortest edge that connects two of them can be part of a MST, combining the two subtrees into a bigger one. 	• We are often interested in traversing all nodes of a graph, so we can repeat the procedure as long as there are unmarked nodes.	
• So,	Recursive solution is also simple:	
Create one (trivial) subtree for each node in the graph; MST = {};	void traverse (Graph G) { for ($v \in$ nodes of G) { traverse (G, v); }	

```
for each edge (v,w), in increasing order of weight {
    if ( (v,w) connects two different subtrees ) {
        Add (v,w) to MST;
        Combine the two subtrees into one;
    }
}
```

Last modified: Sun Nov 23 14:30:34 2008

} }

void traverse (Graph G, Node v) {

for (Edge (v, w) \in G)

traverse (G, w);

if (v is unmarked) {

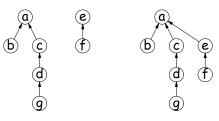
mark (v);

visit v;

Another Take on Topological Sort Union Find • Observation: if we do a depth-first traversal on a DAG whose edges • Kruskal's algorithm required that we have a set of sets of nodes with are reversed, and execute the recursive traverse procedure, we two operations: finish executing traverse(G, v) in proper topologically sorted order. - Find which of the sets a given node belongs to. void topologicalSort (Graph G) { - Replace two sets with their union, reassigning all the nodes in the for (v \in nodes of G) { two original sets to this union. traverse (G, v); • Obvious thing to do is to store a set number in each node, making } finds fast. void traverse (Graph G, Node v) { • Union requires changing the set number in one of the two sets being if (v is unmarked) { merged; the smaller is better choice. mark (v): for (Edge (w, v) \in G) • This means an individual union can take $\Theta(N)$ time. traverse (G, w); • Can union be fast? add v to the result list; } } CS61B: Lecture #37 5 CS61B: Lecture #37 6 Last modified: Sun Nov 23 14:30:34 2008 Last modified: Sun Nov 23 14:30:34 2008

A Clever Trick

- Let's choose to represent a set of nodes by *one* arbitrary representative node in that set.
- Let every node contain a pointer to another node in the same set.
- Arrange for each pointer to represent the *parent* of a node in a tree that has the representative node as its root.
- To find what set a node is in, follow parent pointers.
- To union two such trees, make one root point to the other (choose the root of the higher tree as the union representative).



Path Compression

- \bullet This makes unioning really fast, but the find operation potentially slow ($\Omega(\lg N)$).
- So use the following trick: whenever we do a *find* operation, *compress* the path to the root, so that subsequent finds will be faster.
- That is, make each of the nodes in the path point directly to the root.
- Now union is very fast, and sequence of unions and finds each have very, very nearly constant amortized time.
- Example: find 'g' in last tree (result of compression on right):

