
CS61B Lecture #37

• Today: Minimum spanning trees, recursive graph algorithms, union-
find.

Minimum Spanning Trees

• Problem: Given a set of places and distances between them (assume
always positive), find a set of connecting roads of minimum total
length that allows travel between any two.

• The routes you get will not necessarily be shortest paths.

• Easy to see that such a set of connecting roads and places must
form a tree, because removing one road in a cycle still allows all to
be reached.

Last modified: Sun Nov 23 14:30:34 2008 CS61B: Lecture #37 1

Minimum Spanning Trees by Prim’s Algorithm

• Idea is to grow a tree starting from an arbitrary node.

• At each step, add the shortest edge connecting some node already
in the tree to one that isn’t yet.

• Why must this work?

PriorityQueue fringe;

For each node v { v.dist() = ∞; v.parent() = null; }

Choose an arbitrary starting node, s;

s.dist() = 0;

fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;

while (! fringe.isEmpty()) {

Vertex v = fringe.removeFirst ();

For each edge (v,w) {

if (w ∈ fringe && weight(v,w) < w.dist())

{ w.dist() = weight (v, w); w.parent() = v; }

}

}

A|0 B|2

C|2

D|3 E|3 F|1

G|1 H|2

2

5

3

7

4

5 3

2 2

3 6

4

2

1

1

Last modified: Sun Nov 23 14:30:34 2008 CS61B: Lecture #37 2

Minimum Spanning Trees by Kruskal’s Algorithm

• Observation: the shortest edge in a graph can always be part of a
minimum spanning tree.

• In fact, if we have a bunch of subtrees of a MST, then the shortest
edge that connects two of them can be part of a MST, combining
the two subtrees into a bigger one.

• So,. . .

Create one (trivial) subtree for each node in the graph;
MST = {};

for each edge (v,w), in increasing order of weight {

if ((v,w) connects two different subtrees) {

Add (v,w) to MST;

Combine the two subtrees into one;
}

}

Last modified: Sun Nov 23 14:30:34 2008 CS61B: Lecture #37 3

Recursive Depth-First Traversal

• Previously, we saw an iterative way to do depth-first traversal of a
graph from a particular node.

• We are often interested in traversing all nodes of a graph, so we
can repeat the procedure as long as there are unmarked nodes.

• Recursive solution is also simple:

void traverse (Graph G) {

for (v ∈ nodes of G) {

traverse (G, v);

}

void traverse (Graph G, Node v) {

if (v is unmarked) {

mark (v);

visit v;

for (Edge (v, w) ∈ G)

traverse (G, w);

}

}

Last modified: Sun Nov 23 14:30:34 2008 CS61B: Lecture #37 4

Another Take on Topological Sort

• Observation: if we do a depth-first traversal on a DAG whose edges
are reversed, and execute the recursive traverse procedure, we
finish executing traverse(G,v) in proper topologically sorted order.

void topologicalSort (Graph G) {

for (v ∈ nodes of G) {

traverse (G, v);

}

void traverse (Graph G, Node v) {

if (v is unmarked) {

mark (v);

for (Edge (w, v) ∈ G)

traverse (G, w);

add v to the result list;

}

}

Last modified: Sun Nov 23 14:30:34 2008 CS61B: Lecture #37 5

Union Find

• Kruskal’s algorithm required that we have a set of sets of nodes with
two operations:

– Find which of the sets a given node belongs to.

– Replace two sets with their union, reassigning all the nodes in the
two original sets to this union.

• Obvious thing to do is to store a set number in each node, making
finds fast.

• Union requires changing the set number in one of the two sets being
merged; the smaller is better choice.

• This means an individual union can take Θ(N) time.

• Can union be fast?

Last modified: Sun Nov 23 14:30:34 2008 CS61B: Lecture #37 6

A Clever Trick

• Let’s choose to represent a set of nodes by one arbitrary represen-
tative node in that set.

• Let every node contain a pointer to another node in the same set.

• Arrange for each pointer to represent the parent of a node in a tree
that has the representative node as its root.

• To find what set a node is in, follow parent pointers.

• To union two such trees, make one root point to the other (choose
the root of the higher tree as the union representative).

a

b c

d

g

e

f

a

b c

d

g

e

f

Last modified: Sun Nov 23 14:30:34 2008 CS61B: Lecture #37 7

Path Compression

• This makes unioning really fast, but the find operation potentially
slow (Ω(lg N)).

• So use the following trick: whenever we do a find operation, com-
press the path to the root, so that subsequent finds will be faster.

• That is, make each of the nodes in the path point directly to the
root.

• Now union is very fast, and sequence of unions and finds each have
very, very nearly constant amortized time.

• Example: find ‘g’ in last tree (result of compression on right):

a

b c

d

g

e

f

a

b c d g e

f

Last modified: Sun Nov 23 14:30:34 2008 CS61B: Lecture #37 8

	CS61B Lecture #37
	Minimum Spanning Trees by Prim's Algorithm
	Minimum Spanning Trees by Kruskal's Algorithm
	Recursive Depth-First Traversal
	Another Take on Topological Sort
	Union Find
	A Clever Trick
	Path Compression

