CS61B Lecture #8: Object-Oriented Mechanisms

Readings for Lab: Scan the on-line Javadoc documentation for List,

ArrayList, LinkedList, Iterator, ListIterator, Set, TreeSet, in the java.util

package.
Readings for Wednesday: Chapters 8 and 9 of Head-First Java

Today:

e New in this lecture: the bare mechanics of “object-oriented pro-
gramming.”

e The general topic is: Writing software that operates on many kinds
of data.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 1

Overloading

Problem: How to get System.out.print(x) to print x, regardless of
type of x?

e In Scheme, one function can take an argument of any type, and then
test the type.

e In Java, methods specify a single type of argument.

e Partial solution: overloading—multiple method definitions with the
same name and different numbers or types of arguments.

e E.g., System.out has type java.io.PrintStream, which defines

void println() Prints new line.

void println(String s) Prints S.

void println(boolean b) Prints "true" or "false"
void println(char c¢) Prints single character
void println(int i) Prints I in decimal

etc.

e Each of these is a different function. Compiler decides which to call
on the basis of arguments’ types.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 2

Generic Data Structures

Problem: How to get a “list of anything” or “array of anything"?
e Again, no problem in Scheme.

e But in Java, lists (such as IntList) and arrays have a single type of
element.

e First, the short answer: any reference value can be converted to
type java.lang.Object and back, so can use Object as the “generic
(reference) type™

Object[] things = new Object[2];

things[0] = new IntList (3, null);

things[1] = "Stuff";

// Now ((IntList) things[0]).head ==

// and ((String) things[1]).startsWith("St") is true
// things[0] .head Illegal

// things[1] .startsWith ("St") Illegal

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 3

Dynamic vs. Static Types

e Every value has a type—its dynamic type.

e Every container (variable, component, parameter), literal, function
call, and operator expression (e.g. x+y) has a type—its static type.
e Therefore, every expression has a static type.

Object[] things = new Object[2];
things[0] = new IntList (3, null);
things[1] = "Stuff";

[objectr1] [object | static type
confumer‘

things: {object 1]

Object [] dynamlc type
Str1ng value
IntList
Py — 'swff" [Sering |

???

nulltype

[ntList |

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 4

Type Hierarchies

e A container with (static) type T may contain a certain value only if
that value “is a” T—that is, if the (dynamic) type of the value is a
subtype of T. Likewise, a function with return type T may return
only values that are subtypes of T.

e All types are subtypes of themselves (& that's all for primitive types)

e Reference types form a type hierarchy: some are subtypes of oth-
ers. null's type is a subtype of all reference types.
e All reference types are subtypes of Object.

int double boolean . Object —_sa |

Y X X
Integer Double Boolean String IntList int[] Object[]

t
String[]

<nulltype>

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 5

The Basic Static Type Rule

e Java is designed so that any expression of (static) type T always
yields a value that “is a" T.

e Static types are “"known to the compiler,” because you declare them,
asin

String x; // Static type of field
int £ (Object s) { // Static type of call to f, and of parameter
int y; // Static type of local variable

or they are pre-declared by the language (like 3).

e Compiler insists that in an assignment, L = E, or function call, £ (E),
where

void f (SomeType L) { ... },
E's static type must be subtype of L's static type.

e Similar rules apply to E[i] (static type of E must be an array) and
other built-in operations.

e Slight fudge: compiler will coerce “smaller” integer types to larger
ones, float to double, and (from last lecture) between primitive

types and their wrapper types.
Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 6

Consequences of Compiler's “"Sanity Checks"

e This is a conservative rule. The last line of the following, which you
might think is perfectly sensible, is illegal:

int[] A = new int[2];

Object x = A; // All references are Objects
A[i] = 0; // Static type of A is array...
x[i+1] = 1; // But not of x: ERROR

Compiler figures that not every Object is an array.
e Q: Don't we know that x contains array value!?
e A: Yes, but still must tell the compiler, like this:
((Ant[]) x) [i+1] =
e Defn: Static type of cast (T) Eis T.
e Q: What if x isn't an array value, or is null?

e A: For that we have runtime errors—exceptions.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 7

Overriding and Extension

e Notation so far is clumsy.

e Q: If T know Object variable x contains a String, why can't T write,
x.startsWith("this")?

e A: startsWith is only defined on Strings, not on all Objects, so the
compiler isn't sure it makes sense, unless you cast.

e But, if an operation were defined on all Objects, then you wouldn’t
need clumsy casting.

e Example: .toString() is defined on all Objects. You can always say
x.toString() if x has a reference type.

e The default .toString() function is not very useful; on an IntList,
would produce string like "IntList@2£6684"

e But for any subtype of Object, you may override the default defi-
nition.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 8

Overriding toString

e For example, if s is a String, s.toString() is the identity function
(fortunately).

e For any type you define, you may supply your own definition. For
example, in IntList, could add

public String toString () {
StringBuffer b = new StringBuffer ();
b.append ("[");
for (IntList L = this; L != null; L = L.tail)
b.append (" " + L.head);
b.append ("]");
return b.toString ();
}

e If x = new IntList (3, new IntList (4, null)), thenx.toString()
is n [3 4] ll'

e Conveniently, the "+" operator on Strings calls . toString when asked
to append an Object, and so does the "s" formatter for printf.

e With this trick, you can supply an output function for any type you
define.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 9

Extending a Class

e To say that class B is a direct subtype of class A (or A is a direct
superclass of B), write

class B extends A { ... }

e By default, class ... extends java.lang.Object.

e The subtype inherits all fields and methods of its superclass (and
passes them along to any of its subtypes).

e Inclass B, you may override an instance method (not a static method),
by providing a new definition with same signature (name, return
type, argument types).

e I'll say that a method and all its overridings form a dynamic method
set.

e The Point: If £(...) isaninstance method, then the call x. £(...)
calls whatever overriding of £ applies to the dynamic type of x, re-
gardless of the static type of x.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 10

Illustration

class Worker {
void work () {
collectPay ();
}
}

class Prof extends Worker { class TA extends Worker {
// Inherits work () void work () {
} while (true) {
doLab(); discuss(); officeHour();
}
}
}

Prof paul = new Prof (); paul.work() ==> collectPay();
TA adam = new TA (); adam.work() ==> doLab(); discuss(); ...
wPaul.work() ==> collectPay();
wAdam.work() ==> doLab(); discuss(); ...

Worker wPaul = paul,
wAdam = adam;

Lesson: For instance methods (only), select method based on dynamic
type. Simple to state, but we'll see it has profound consequences.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 11

What About Fields and Static Methods?

class Parent { class Child extends Parent {
int x = 0; String x = "no";
static int y = 1;
static void £() {

System.out.printf ("Ahem!%n");
} }
static int f(int x) { }
return x+1;

static String y = "way";
static void £() {
System.out.printf ("I wanna!%n");

}

Child tom = new Child (O);
Parent pTom = tom;

tom.x ==> no pTom.x ==> 0
tom.y ==> way pTom.y ==>1
tom.f() ==> I wanna! pTom.f() ==> Ahem!
tom.f (1) ==> 2 pTom.£(1) ==> 2

Lesson: Fields hide inherited fields of same name; static methods
hide methods of the same signature.
Real Lesson: Hiding causes confusion; so understand it, but don't do it!

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 12

What's the Point?

e The mechanism described here allows us to define a kind of generic
method.

e A superclass can define a set of operations (methods) that are com-
mon to many different classes.

e Subclasses can then provide different implementations of these
common methods, each specialized in some way.

e All subclasses will have at least the methods listed by the super-
class.

e So when we write methods that operate on the superclass, they will
automatically work for all subclasses with no extra work.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 13

	CS61B Lecture #8: Object-Oriented Mechanisms
	Overloading
	Generic Data Structures
	Dynamic vs. Static Types
	Type Hierarchies
	The Basic Static Type Rule
	Consequences of Compiler's ``Sanity Checks''
	Overriding and Extension
	Overriding toString
	Extending a Class
	Illustration
	What About Fields and Static Methods?
	What's the Point?

