
CS61B Lecture #8: Object-Oriented Mechanisms

Readings for Lab: Scan the on-line Javadoc documentation for List,
ArrayList, LinkedList, Iterator, ListIterator, Set, TreeSet, in the java.util
package.

Readings for Wednesday: Chapters 8 and 9 of Head-First Java

Today:

• New in this lecture: the bare mechanics of “object-oriented pro-
gramming.”

• The general topic is: Writing software that operates on many kinds
of data.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 1



Overloading

Problem: How to get System.out.print(x) to print x, regardless of
type of x?

• In Scheme, one function can take an argument of any type, and then
test the type.

• In Java, methods specify a single type of argument.

• Partial solution: overloading—multiple method definitions with the
same name and different numbers or types of arguments.

• E.g., System.out has type java.io.PrintStream, which defines

void println() Prints new line.
void println(String s) Prints S.
void println(boolean b) Prints "true" or "false"
void println(char c) Prints single character
void println(int i) Prints I in decimal
etc.

• Each of these is a different function. Compiler decides which to call
on the basis of arguments’ types.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 2



Generic Data Structures

Problem: How to get a “list of anything” or “array of anything”?

• Again, no problem in Scheme.

• But in Java, lists (such as IntList) and arrays have a single type of
element.

• First, the short answer: any reference value can be converted to
type java.lang.Object and back, so can use Object as the “generic
(reference) type”:

Object[] things = new Object[2];

things[0] = new IntList (3, null);

things[1] = "Stuff";

// Now ((IntList) things[0]).head == 3;

// and ((String) things[1]).startsWith("St") is true

// things[0].head Illegal

// things[1].startsWith ("St") Illegal

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 3



Dynamic vs. Static Types

• Every value has a type—its dynamic type.

• Every container (variable, component, parameter), literal, function
call, and operator expression (e.g. x+y) has a type—its static type.

• Therefore, every expression has a static type.

Object[] things = new Object[2];

things[0] = new IntList (3, null);

things[1] = "Stuff";

things:

Object[] Object Object

Object[]

Object[]

3

IntList

"Stuff"

String

int <nulltype>

IntList

int IntList

String

???

static type

container

dynamic type

value

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 4



Type Hierarchies

• A container with (static) type T may contain a certain value only if
that value “is a” T—that is, if the (dynamic) type of the value is a
subtype of T. Likewise, a function with return type T may return
only values that are subtypes of T.

• All types are subtypes of themselves (& that’s all for primitive types)

• Reference types form a type hierarchy; some are subtypes of oth-
ers. null’s type is a subtype of all reference types.

• All reference types are subtypes of Object.

int double boolean ... Object

Integer Double Boolean String IntList int[] Object[] ...

String[]

<nulltype>

is a

(un)wraps to

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 5



The Basic Static Type Rule

• Java is designed so that any expression of (static) type T always
yields a value that “is a” T.

• Static types are “known to the compiler,” because you declare them,
as in

String x; // Static type of field

int f (Object s) { // Static type of call to f, and of parameter

int y; // Static type of local variable

or they are pre-declared by the language (like 3).

• Compiler insists that in an assignment, L = E, or function call, f(E),
where

void f (SomeType L) { ... },

E’s static type must be subtype of L’s static type.

• Similar rules apply to E[i] (static type of E must be an array) and
other built-in operations.

• Slight fudge: compiler will coerce “smaller” integer types to larger
ones, float to double, and (from last lecture) between primitive
types and their wrapper types.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 6



Consequences of Compiler’s “Sanity Checks”

• This is a conservative rule. The last line of the following, which you
might think is perfectly sensible, is illegal:

int[] A = new int[2];

Object x = A; // All references are Objects

A[i] = 0; // Static type of A is array...

x[i+1] = 1; // But not of x: ERROR

Compiler figures that not every Object is an array.

• Q: Don’t we know that x contains array value!?

• A: Yes, but still must tell the compiler, like this:

((int[]) x)[i+1] = 1;

• Defn: Static type of cast (T) E is T.

• Q: What if x isn’t an array value, or is null?

• A: For that we have runtime errors—exceptions.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 7



Overriding and Extension

• Notation so far is clumsy.

• Q: If I know Object variable x contains a String, why can’t I write,
x.startsWith("this")?

• A: startsWith is only defined on Strings, not on all Objects, so the
compiler isn’t sure it makes sense, unless you cast.

• But, if an operation were defined on all Objects, then you wouldn’t
need clumsy casting.

• Example: .toString() is defined on all Objects. You can always say
x.toString() if x has a reference type.

• The default .toString() function is not very useful; on an IntList,
would produce string like "IntList@2f6684"

• But for any subtype of Object, you may override the default defi-
nition.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 8



Overriding toString

• For example, if s is a String, s.toString() is the identity function
(fortunately).

• For any type you define, you may supply your own definition. For
example, in IntList, could add

public String toString () {

StringBuffer b = new StringBuffer ();

b.append ("[");

for (IntList L = this; L != null; L = L.tail)

b.append (" " + L.head);

b.append ("]");

return b.toString ();

}

• If x = new IntList (3, new IntList (4, null)), then x.toString()
is "[3 4]".

• Conveniently, the "+" operator on Strings calls .toStringwhen asked
to append an Object, and so does the "%s" formatter for printf.

• With this trick, you can supply an output function for any type you
define.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 9



Extending a Class

• To say that class B is a direct subtype of class A (or A is a direct
superclass of B), write

class B extends A { ... }

• By default, class ... extends java.lang.Object.

• The subtype inherits all fields and methods of its superclass (and
passes them along to any of its subtypes).

• In class B, you may override an instance method (not a static method),
by providing a new definition with same signature (name, return
type, argument types).

• I’ll say that a method and all its overridings form a dynamic method
set.

• The Point: If f(...) is an instance method, then the call x.f(...)
calls whatever overriding of f applies to the dynamic type of x, re-
gardless of the static type of x.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 10



Illustration

class Worker {

void work () {

collectPay ();

}

}

class Prof extends Worker {

// Inherits work ()

}

class TA extends Worker {

void work () {

while (true) {

doLab(); discuss(); officeHour();

}

}

}

Prof paul = new Prof (); | paul.work() ==> collectPay();

TA adam = new TA (); | adam.work() ==> doLab(); discuss(); ...

Worker wPaul = paul, | wPaul.work() ==> collectPay();

wAdam = adam; | wAdam.work() ==> doLab(); discuss(); ...

Lesson: For instance methods (only), select method based on dynamic
type. Simple to state, but we’ll see it has profound consequences.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 11



What About Fields and Static Methods?

class Parent {

int x = 0;

static int y = 1;

static void f() {

System.out.printf ("Ahem!%n");

}

static int f(int x) {

return x+1;

}

}

class Child extends Parent {

String x = "no";

static String y = "way";

static void f() {

System.out.printf ("I wanna!%n");

}

}

Child tom = new Child (); | tom.x ==> no pTom.x ==> 0

Parent pTom = tom; | tom.y ==> way pTom.y ==> 1

| tom.f() ==> I wanna! pTom.f() ==> Ahem!

| tom.f(1) ==> 2 pTom.f(1) ==> 2

Lesson: Fields hide inherited fields of same name; static methods
hide methods of the same signature.
Real Lesson: Hiding causes confusion; so understand it, but don’t do it!

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 12



What’s the Point?

• The mechanism described here allows us to define a kind of generic
method.

• A superclass can define a set of operations (methods) that are com-
mon to many different classes.

• Subclasses can then provide different implementations of these
common methods, each specialized in some way.

• All subclasses will have at least the methods listed by the super-
class.

• So when we write methods that operate on the superclass, they will
automatically work for all subclasses with no extra work.

Last modified: Mon Sep 14 12:16:42 2009 CS61B: Lecture #8 13


	CS61B Lecture #8: Object-Oriented Mechanisms
	Overloading
	Generic Data Structures
	Dynamic vs. Static Types
	Type Hierarchies
	The Basic Static Type Rule
	Consequences of Compiler's ``Sanity Checks''
	Overriding and Extension
	Overriding toString
	Extending a Class
	Illustration
	What About Fields and Static Methods?
	What's the Point?

