
CS61B Lecture #21

Today: Trees

Readings for Today: Data Structures, Chapter 5

Readings for Next Topic: Data Structures, Chapter 6

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 1

A Recursive Structure

• Trees naturally represent recursively defined, hierarchical objects
with more than one recursive subpart for each instance.

• Common examples: expressions, sentences.

– Expressions have definitions such as “an expression consists of a
literal or two expressions separated by an operator.”

• Also describe structures in which we recursively divide a set into
multiple subsets.

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 2

Fundamental Operation: Traversal

• Traversing a tree means enumerating (some subset of) its nodes.

• Typically done recursively, because that is natural description.

• As nodes are enumerated, we say they are visited.

• Three basic orders for enumeration (+ variations):

– Preorder: visit node, traverse its children.

– Postorder: traverse children, visit node.

– Inorder: traverse first child, visit node, traverse second child
(binary trees only).

6

3

0 2

1

5

4

Postorder

0

1

2 3

4

5

6

Preorder

4

1

0 3

2

5

6

inorder

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 3

Preorder Traversal and Prefix Expressions

Problem: Convert

-

-

*

x +

y 3

z

⇒ (- (- (* x (+ y 3))) z)

(Tree<Label> is supposed to mean “Tree whose labels have type Label.)

static String toLisp (Tree<String> T) {

if (T == null)

return "";

else if (T.degree () == 0)

return T.label ();

else {

String R; R = "";

for (int i = 0; i < T.numChildren (); i += 1)

R += " " + toLisp (T.child (i));

return String.format ("(%s%s)", T.label (), R);

}
Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 4

}

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 5

Inorder Traversal and Infix Expressions

Problem: Convert
-

-

*

x +

y 3

z

⇒ ((-(x*(y+3)))-z)
To think about: how to
get rid of all those paren-
theses.

static String toInfix (Tree<String> T) {

if (T == null)

return "";

if (T.degree () == 0)

return T.label ();

else {

return String.format ("(%s%s%s)",

toInfix (T.left ()), T.label (), toInfix (T.right ())

}

}

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 6

Postorder Traversal and Postfix Expressions

Problem: Convert

-

-

*

x +

y 3

z

⇒ x y 3 +:2 *:2 -:1 z -:2

static String toPolish (Tree<String> T) {

if (T == null)

return "";

else {

String R; R = "";

for (int i = 0; i < T.numChildren (); i += 1)

R += toPolish (T.child (i)) + " ";

return String.format ("%s%s:%d", R, T.label (), T.degree ());

}

}

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 7

A General Traversal: The Visitor Pattern

void preorderTraverse (Tree<Label> T, Action<Label> whatToDo)

{

if (T != null) {

whatToDo.action (T);

for (int i = 0; i < T.numChildren (); i += 1)

preorderTraverse (T.child (i), whatToDo);

}

}

• What is Action?

interface Action<Label> {

void action (Tree<Label> T);

}

class Print implements Action<String> { | preorderTraverse (myTree,

void action (Tree<String> T) { | new Print ());

System.out.print (T.label ()); |

} |

} |

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 8

Times

• The traversal algorithms have roughly the form of the boom example
in §1.3.3 of Data Structures—an exponential algorithm.

• However, the role of M in that algorithm is played by the height of
the tree, not the number of nodes.

• In fact, easy to see that tree traversal is linear: Θ(N), where N
is the # of nodes: Form of the algorithm implies that there is one
visit at the root, and then one visit for every edge in the tree.
Since every node but the root has exactly one parent, and the root
has none, must be N − 1 edges in any non-empty tree.

• In positional tree, is also one recursive call for each empty tree, but
of empty trees can be no greater than kN , where k is arity.

• For k-ary tree (max # children is k), h + 1 ≤ N ≤ kh+1−1

k−1
, where h is

height.

• So h ∈ Ω(logk N) = Ω(lg N) and h ∈ O(N).

• Many tree algorithms look at one child only. For them, time is pro-
portional to the height of the tree, and this is Θ(lg N), assuming
that tree is bushy—each level has about as many nodes as possible.

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 9

Level-Order (Breadth-First) Traversal

Problem: Traverse all nodes at depth 0, then depth 1, etc:

0

1

3 4

6

2

5

• One technique: Iterative Deepening. For each level, k, from 0 to h,
call doLevel(T,k)

void doLevel (Tree T, int lev) {

if (lev == 0)

visit T
else

for each non-null child, C, of T {

doLevel (C, lev-1);

}

}

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 10

Iterative Deepening Time?

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

0

1

2

3

• Let h be height, N be # of nodes.

• Count # edges traversed (i.e, # of calls, not counting null nodes).

• First (full) tree: 1 for level 0, 3 for level 1, 7 for level 2, 15 for level
3.

• Or in general (21 − 1) + (22 − 1) + . . . + (2h+1 − 1) = 2h+2 − h ∈ Θ(N),
since N = 2h+1 − 1 for this tree.

• Second (right leaning) tree: 1 for level 0, 2 for level 2, 3 for level 3.

• Or in general (h + 1)(h + 2)/2 = N(N + 1)/2 ∈ Θ(N 2), since N = h + 1
for this kind of tree.

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 11

Iterative Traversals

• Tree recursion conceals data: a stack of nodes (all the T arguments)
and a little extra information. Can make the data explicit, e.g.:

void preorderTraverse2 (Tree<Label> T, Action whatToDo) {

Stack<Label> s = new Stack<Label> ();

s.push (T);

while (! s.isEmpty ()) {

Tree<Label> node = s.pop ();

if (node == null)

continue;

whatToDo.action (node);

for (int i = node.numChildren ()-1; i >= 0; i -= 1)

s.push (node.child (i));

}

}

• To do a breadth-first traversal, use a queue instead of a stack,
replace push with add, and pop with removeFirst.

• Makes breadth-first traversal worst-case linear time in all cases,
but also linear space for “bushy” trees.

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 12

Iterators for Trees

• Frankly, iterators are not terribly convenient on trees.

• But can use ideas from iterative methods.

class PreorderTreeIterator<Label> implements Iterator<Label> {

private Stack<Tree<Label>> s = new Stack<Tree<Label>> ();

public PreorderTreeIterator (Tree<Label> T) { s.push (T); }

public boolean hasNext () { return ! s.isEmpty (); }

public T next () {

Tree<Label> result = s.pop ();

for (int i = result.numChildren ()-1; i >= 0; i -= 1)

s.push (result.child (i));

return result.label ();

}

void remove () { throw new UnsupportedOperationException (); }

}

Example: (what do I have to add to class Tree first?)

for (String label : aTree) System.out.print (label + " ");

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 13

Tree Representation

0

1. . . 2. . . 3. . .

(a) Embedded child pointers
(+ optional parent pointers)

0

1. . . 2. . . 3. . .

(b) Array of child pointers
(+ optional parent pointers)

0

1 2 3

0

1 2 3

.

(c) child/sibling pointers

0 1 2 3 · · ·

(d) breadth-first array
(complete trees)

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 14

Divide and Conquer

• Much (most?) computation is devoted to finding things in response
to various forms of query.

• Linear search for response can be expensive, especially when data
set is too large for primary memory.

• Preferable to have criteria for dividing data to be searched into
pieces recursively

• Remember figure for lg N algorithms: at 1µsec per comparison, could
process 10300000 items in 1 sec.

• Tree is a natural framework for the representation:

decision
data

no yes

decision
data

low mid high
Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 15

Binary Search Trees

Binary Search Property:

• Tree nodes contain keys, and possibly other data.

• All nodes in left subtree of node have smaller keys.

• All nodes in right subtree of node have larger keys.

• “Smaller” means any complete transitive, anti-symmetric ordering on
keys:

– exactly one of x ≺ y and y ≺ x true.

– x ≺ y and y ≺ z imply x ≺ z.

– (To simplify, won’t allow duplicate keys this semester).

• E.g., in dictionary database, node label would be (word, definition):
word is the key.

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 16

Finding

• Searching for 50 and 49:

42

19

16 25

30

60

50 91

/** Node in T containing L,

* or null if none */

static BST find(BST T, Key L) {

if (T == null)

return T;

if (L.keyequals (T.label()))

return T;

else if (L ≺ T.label())

return find(T.left(), L);

else

return find(T.right (), L);

}

• Dashed boxes show which node labels we look at.

• Number looked at proportional to height of tree.

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 17

Inserting

• Inserting 27

42
*

19

16

*

25
*

30
*

27

60

50 91

/** Insert L in T, replacing existing

* value if present, and returning

* new tree. */

BST insert(BST T, Key L) {

if (T == null)

return new BST(L);

if (L.keyequals (T.label()))

T.setLabel (L);

else if (L ≺ T.label())

T.setLeft(insert (T.left (), L));

else

T.setRight(insert (T.right (), L));

return T;

}

• Starred edges are set (to themselves, unless initially null).

• Again, time proportional to height.

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 18

Deletion

42

19

16 25

30

27

60

50 91

Initial

42
*

19

16

*

25
*

30
*

60

50 91

27

Remove 27

42
*

19

16

*

30

60

50 91

25

Remove 25

50

19

16 30

*

60
*

91

50

Remove 42

formerly contained 42

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 19

A Leap Ahead: Quadtrees

• Want to index information about locations so that items can be re-
trieved by position.

• Quadtrees do so using standard data-structuring trick: Divide and
Conquer.

• Idea: divide (2D) space into four quadrants, and store items in the
appropriate quadrant. Repeat this recursively with each quadrant
that contains more than one item.

• Original definition: a quadtree is either

– Empty, or

– An item at some position (x, y), called the root, plus

– four quadtrees, each containing only items that are northwest,
northeast, southwest, and southeast of (x, y).

• Big idea is that if you are looking for point (x′, y′) and the root is not
the point you are looking for, you can narrow down which of the four
subtrees of the root to look in by comparing coordinates (x, y) with
(x′, y′).

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 20

Classical Quadtree: Example

•
A

•
B

•
C

•
D

•
E

A

B E

C

D

•
D

•
A

•
B

•
C

•
E

D

C B A

E

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 21

Point-region (PR) Quadtrees

• If we use a QuadTree to track moving objects, it may be useful to
be able to delete items from a tree: when an object moves, the
subtree that it goes in may change.

• Difficult to do with the classical data structure above, so we’ll de-
fine instead:

• A quadtree consists of a bounding rectangle, B and either

– Zero up to a small number of items that lie in that rectangle, or

– Four quadtrees whose bounding rectangles are the four quadrants
of B (all of equal size).

• A completely empty quadtree can have an arbitrary bounding rect-
angle, or you can wait for the first point to be inserted.

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 22

Example of PR Quadtree

-20

-15

-10

0

20

-20 0 5 10 20

A •

B •

• C

• D

(≤ 1 point per leaf)

0

A B

D C

40

20

10

5

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 23

Navigating PR Quadtrees

• To find an item at (x, y) in quadtree T ,

1. If (x, y) is outside the bounding rectangle of T , or T is empty,
then (x, y) is not in T .

2. Otherwise, if T contains a small set of items, then (x, y) is in T
iff it is among these items.

3. Otherwise, T consists of four quadtrees. Recursively look for
(x, y) in each (however, step #1 above will cause all but one of
these bounding boxes to reject the point immediately).

• Similar procedure works when looking for all items within some rect-
angle, R:

1. If R does not intersect the bounding rectangle of T , or T is
empty, then there are no items in R.

2. Otherwise, if T contains a set of items, return those that are in
R, if any.

3. Otherwise, T consists of four quadtrees. Recursively look for
points in R in each one of them.

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 24

Insertion into PR Quadtrees

Various cases for inserting a new point N , showing initial state =⇒ final
state.

(0,0)

(10,10)

=⇒

(0,0)

(10,10)

•N

(0,0)

(10,10)

•

=⇒

(0,0)

(10,10)

•

•N

(0,0)

(10,10)

•

•
•

•
=⇒

(0,0)

(10,10)

•

•
•

•

•N

(0,0)

(5,5)

•

=⇒

(0,0)

(10,10)

•

•N

Last modified: Mon Oct 17 11:44:12 2011 CS61B: Lecture #21 25

	CS61B Lecture #21
	A Recursive Structure
	Fundamental Operation: Traversal
	Preorder Traversal and Prefix Expressions
	Inorder Traversal and Infix Expressions
	Postorder Traversal and Postfix Expressions
	A General Traversal: The Visitor Pattern
	Times
	Level-Order (Breadth-First) Traversal
	Iterative Deepening Time?
	Iterative Traversals
	Iterators for Trees
	Tree Representation
	Divide and Conquer
	Binary Search Trees
	Finding
	Inserting
	Deletion
	A Leap Ahead: Quadtrees
	Classical Quadtree: Example
	Point-region (PR) Quadtrees
	Example of PR Quadtree
	Navigating PR Quadtrees
	Insertion into PR Quadtrees

