
CS61B Lecture #31

Today:

• Pseudo-random Numbers (Chapter 11)

• What use are random sequences?

• What are “random sequences”?

• Pseudo-random sequences.

• How to get one.

• Relevant Java library classes and methods.

• Random permutations.

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 1

Why Random Sequences?

• Choose statistical samples

• Simulations

• Random algorithms

• Cryptography:

– Choosing random keys

– Generating streams of random bits (e.g., SSL xor’s your data with
a regeneratable, pseudo-random bit stream that only you and the
recipient can generate).

• And, of course, games

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 2

What Is a “Random Sequence”?

• How about: “a sequence where all numbers occur with equal fre-
quency”?

– Like 1, 2, 3, 4, . . . ?

• Well then, how about: “an unpredictable sequence where all numbers
occur with equal frequency?”

– Like 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 0, 1, 1, 1,. . . ?

• Besides, what is wrong with 0, 0, 0, 0, . . . anyway? Can’t that occur
by random selection?

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 3

Pseudo-Random Sequences

• Even if definable, a “truly” random sequence is difficult for a com-
puter (or human) to produce.

• For most purposes, need only a sequence that satisfies certain sta-
tistical properties, even if deterministic.

• Sometimes (e.g., cryptography) need sequence that is hard or im-
practical to predict.

• Pseudo-random sequence: deterministic sequence that passes some
given set of statistical tests.

• For example, look at lengths of runs: increasing or decreasing con-
tiguous subsequences.

• Unfortunately, statistical criteria to be used are quite involved. For
details, see Knuth.

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 4

Generating Pseudo-Random Sequences

• Not as easy as you might think.

• Seemingly complex jumbling methods can give rise to bad sequences.

• Linear congruential method is a simple method that has withstood
test of time:

X0 = arbitrary seed

Xi = (aXi−1 + c) mod m, i > 0

• Usually, m is large power of 2.

• For best results, want a ≡ 5 mod 8, and a, c, m with no common
factors.

• This gives generator with a period of m (length of sequence before
repetition), and reasonable potency (measures certain dependencies
among adjacent Xi.)

• Also want bits of a to “have no obvious pattern” and pass certain
other tests (see Knuth).

• Java uses a = 25214903917, c = 11, m = 248, to compute 48-bit
pseudo-random numbers but I haven’t checked to see how good this
is.

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 5

What Can Go Wrong?

• Short periods, many impossible values: E.g., a, c, m even.

• Obvious patterns. E.g., just using lower 3 bits of Xi in Java’s 48-bit
generator, to get integers in range 0 to 7. By properties of modular
arithmetic,

Xi mod 8 = (25214903917Xi−1 + 11 mod 248) mod 8

= (5(Xi−1 mod 8) + 3) mod 8

so we have a period of 8 on this generator; sequences like

0, 1, 3, 7, 1, 2, 7, 1, 4, . . .

are impossible. This is why Java doesn’t give you the raw 48 bits.

• Bad potency leads to bad correlations.

– E.g. Take c = 0, a = 65539, m = 231, and make 3D points:
(Xi/S, Xi+1/S,Xi+2/S), where S scales to a unit cube.

– Points will be arranged in parallel planes with voids between.

– So, “random points” won’t ever get near many points in the cube.

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 6

Other Generators

• Additive generator:

Xn =

arbitary value , n < 55
(Xn−24 + Xn−55) mod 2e, n ≥ 55

• Other choices than 24 and 55 possible.

• This one has period of 2f(255 − 1), for some f < e.

• Simple implementation with circular buffer:

i = (i+1) % 55;

X[i] += X[(i+31) % 55]; // Why +31 (55-24) instead of -24?

return X[i]; /* modulo 232 */

• where X[0 .. 54] is initialized to some “random” initial seed val-
ues.

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 7

Adjusting Range and Distribution

• Given raw sequence of numbers, Xi, from above methods in range
(e.g.) 0 to 248, how to get uniform random integers in range 0 to
n − 1?

• If n = 2k, is easy: use top k bits of next Xi (bottom k bits not as
“random”)

• For other n, be careful of slight biases at the ends. For example, if
we compute Xi/(248/n) using all integer division, and if (248/n) doesn’t
come out even, then you can get n as a result (which you don’t want).

• Easy enough to fix with floating point, but can also do with integers;
one method (used by Java for type int):

/** Random integer in the range 0 .. n-1, n>0. */

int nextInt (int n) {

long X = next random long (0 ≤ X < 248);
if (n is 2k for some k) return top k bits of X;

int MAX = largest multiple of n that is < 248;

while (Xi >= MAX) X = next random long (0 ≤ X < 248);
return Xi / (MAX/n);

}

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 8

Arbitrary Bounds

• How to get arbitrary range of integers (L to U)?

• To get random float, x in range 0 ≤ x < d, compute

return d*nextInt (1<<24) / (1<<24);

• Random double a bit more complicated: need two integers to get
enough bits.

long bigRand = ((long) nextInt(1<<26) << 27) + (long) nextInt(1<<27);

return d * bigRand / (1L << 53);

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 9

Other Distributions

• Can also turn uniform random integers into arbitrary other distri-
butions, like the Gaussian.

0-2 -1 1 2

1
y

x

P (x)

• Curve is the desired probability distribution (P (x) is the probability
that a certain random variable is ≤ x.)

• Choose y uniformly between 0 and 1, and the corresponding x will be
distributed according to P .

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 10

Computing Arbitrary Discrete Distribution

• Example from book: want integer values Xi with Pr(Xi = 0) = 1/12,
Pr(Xi = 1) = 1/2, Pr(Xi = 2) = 1/3, Pr(Xi = 3) = 1/12:

0 1 2 3

Legend:
0:
1:
2:
3:

0 1 2 3 4

• To get desired probabilities, choose floating-point number, 0 ≤ Ri <
4, and see what color you land on.

• ≤ 2 colors in each beaker ≡ ≤ 2 colors between i and i + 1.

return (Ri % 1.0 > v[(int) Ri])

? top[(int) Ri]

: bot[Ri];

where
v = { 1.0/3.0, 2.0/3.0, 0, 1.0/3.0 };

top = { 1, 2, 2, 1 },

bot = { 0, 1, /* ANY */ 0, 3 };

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 11

Java Classes

• Math.random(): random double in [0..1).

• Class java.util.Random: a random number generator with construc-
tors:

Random() generator with “random” seed (based on time).

Random(seed) generator with given starting value (reproducible).

• Methods

next(k) k-bit random integer

nextInt(n) int in range [0..n).

nextLong() random 64-bit integer.

nextBoolean(), nextFloat(), nextDouble() Next random values of other
primitive types.

nextGaussian() normal distribution with mean 0 and standard devia-
tion 1 (“bell curve”).

• Collections.shuffle(L,R) for list R and Random R permutes L
randomly (using R).

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 12

Shuffling

• A shuffle is a random permutation of some sequence.

• Obvious dumb technique for sorting N-element list:

– Generate N random numbers

– Attach each to one of the list elements

– Sort the list using random numbers as keys.

• Can do quite a bit better:

void shuffle (List L, Random R) {

for (int i = L.size (); i > 0; i -= 1)

swap element i-1 of L with element R.nextInt (i) of L;

}

• Example:

Swap items 0 1 2 3 4 5
Start A♣2♣ 3♣A♥2♥ 3♥

5 ⇐⇒ 1 A♣3♥ 3♣A♥2♥ 2♣

4 ⇐⇒ 2 A♣3♥ 2♥A♥3♣ 2♣

Swap items 0 1 2 3 4 5
3 ⇐⇒ 3 A♣3♥ 2♥A♥3♣ 2♣

2 ⇐⇒ 0 2♥ 3♥A♣A♥3♣ 2♣

1 ⇐⇒ 0 3♥ 2♥A♣A♥3♣ 2♣

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 13

Random Selection

• Same technique would allow us to select N items from list:

/** Permute L and return sublist of K>=0 randomly

* chosen elements of L, using R as random source. */

List select (List L, int k, Random R) {

for (int i = L.size (); i+k > L.size (); i -= 1)

swap element i-1 of L with element

R.nextInt (i) of L;

return L.sublist (L.size ()-k, L.size ());

}

• Not terribly efficient for selecting random sequence of K distinct
integers from [0..N), with K ≪ N .

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 14

Alternative Selection Algorithm (Floyd)

/** Random sequence of K distinct integers

* from 0..N-1, 0<=K<=N. */

IntList selectInts(int N, int K, Random R)

{

IntList S = new IntList();

for (int i = N-K; i < N; i += 1) {

// All values in S are < i

int s = R.randInt(i+1); // 0 <= s <= i < N

if (s == S.get(j) for some j)
// Insert value i (which can’t be there

// yet) after the s (i.e., at a random

// place other than the front)

S.add (j+1, i);

else

// Insert random value s at front

S.add (0, s);

}

return S;

}

Example

i s S
5 4 [4]
6 2 [2, 4]
7 5 [5, 2, 4]
8 5 [5, 8, 2, 4]
9 4 [5, 8, 2, 4, 9]

selectRandomIntegers (10, 5, R)

Last modified: Fri Nov 13 16:10:52 2009 CS61B: Lecture #31 15

	CS61B Lecture #31
	Why Random Sequences?
	What Is a ``Random Sequence''?
	Pseudo-Random Sequences
	Generating Pseudo-Random Sequences
	What Can Go Wrong?
	Other Generators
	Adjusting Range and Distribution
	Arbitrary Bounds
	Other Distributions
	Computing Arbitrary Discrete Distribution
	Java Classes
	Shuffling
	Random Selection
	Alternative Selection Algorithm (Floyd)

