
DO    
 N

OT

REPRODUCE

UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger

Fall 2011

Test #3 Solutions

1



Test #3 Solutions

DO    
 N

OT

REPRODUCE

2

1. [6 points] Provide simple and tight asymptotic bounds for the running times of the following
methods (including any methods they call) as a function of the value of N , the length of A. If
possible, give a single Θ bound that always describes the running time, regardless of the input.
Otherwise give an upper and a lower bound. Give brief justifications of your answers.

a. [1 point]

static List<Integer> reverse(List<Integer> A) {

ArrayList<Integer> R = new ArrayList<Integer>();

for (Integer x : A) {

R.add(0, x);

}

return R;

}

Solution: We insert at the beginning of a list stored as an array each time. The time
required is therefore 1 + 2 + . . . + N ∈ Θ(N2).

b. [1 point]

static List<Integer> reverse(List<Integer> A) {

ArrayList<Integer> R = new ArrayList<Integer>();

for (int i = A.length - 1; i >= 0; i -= 1) {

R.add(A.get(i));

}

return R;

}

Solution: We insert at the end of a list stored as an array each time. The amortized
time per insertion is therefore constant, giving a bound on the loop of Θ(N).

Copyright (c) 2011 by P. N. Hilfinger. Reproduction prohibited.



Test #3 Solutions

DO    
 N

OT

REPRODUCE

3

c. [1 point]

/** True iff X is among elements #L through #U of A,

* assuming A is sorted. */

static boolean contains(ArrayList<Integer> A, int L, int U, int x) {

if (L > U)

return false;

int m = (L + U) / 2;

if (A.get(m) < x)

return contains(A, m + 1, U, x);

else if (A.get(m) > x)

return contains(A, L, m - 1, x);

else

return true;

}

Initial call: contains(someList, 0, someList.size()-1, someValue).

Solution: This is a standard binary search, giving a running time in O(lg N). The
search stops on finding x, which can happen immediately, so the only thing we can say
about the lower bound is that it is Ω(1).

d. [1 point]

/** True iff X is among elements #L through #U of A,

* assuming A is sorted. */

static boolean contains(LinkedList<Integer> A, int L, int U, int x) {

if (L > U)

return false;

int m = (L + U) / 2;

if (A.get(m) < x)

return contains(A, m + 1, U, x);

else if (A.get(m) > x)

return contains(A, L, m - 1, x);

else

return true;

}

Initial call: contains(someList, 0, someList.size()-1, someValue).

Solution: Although this is a binary search, the .get method on a linked list requires
Θ(N) time in the worst case. If we cleverly use a ListIterator, so as to access each
midpoint element starting from the last one, we get an upper bound of N/2 + N/4 +
. . . + 1 ∈ O(N), but if we just use .get as given, we get a bound of O(N lg N) (lg N
.gets, each taking O(N) time).

The lower bound is Ω(1), as for (c), and for the same reason.

Copyright (c) 2011 by P. N. Hilfinger. Reproduction prohibited.



Test #3 Solutions

DO    
 N

OT

REPRODUCE

4

e. [2 [points]

static void munge(int[] A, Random R) {

for (int i = 1; i < A.length; i += 1) {

if (A[i-1] > A[i])

return;

}

for (int i = 0; i < 8; i += 1) {

k = R.nextInt(A.length); /* 0 <= k < A.length */

int t = A[k]; A[k] = A[0]; A[0] = t;

}

insertionSort(A);

}

Solution: If the array is unsorted, the first loop will cause it to exit in time bounded by
O(N) and Ω(1). If the array is sorted, the first loop requires Θ(N) time. The second loop
then introduces up to O(8N) inversions in Θ(1) time. This in turn means that insertion
sorting will require Θ(8N) = Θ(N) time. Overall then, we have bounds of O(N) and Ω(1).

Copyright (c) 2011 by P. N. Hilfinger. Reproduction prohibited.



Test #3 Solutions

DO    
 N

OT

REPRODUCE

5

2. [5 points]

a. Convert the following red-black tree into the corresponding 2-4 tree (shaded nodes are black).

20

10

5

7

15

25

21 30

Solution:

10 20

5 7 15 21 25 30

b. Show a (2,4) tree of minimum height that contains 15 keys (we’re not interested in specific
key values).

• • •

• • • • • • • • • • • •

c. Show a (2,4) tree of maximum height that contains 15 keys.

•

•

•

• •

•

• •

•

•

• •

•

• •

Copyright (c) 2011 by P. N. Hilfinger. Reproduction prohibited.



Test #3 Solutions

DO    
 N

OT

REPRODUCE

6

d. Show a minimum-height red-black tree containing 15 keys.

Solution:

•

•

•

• •

•

• •

•

•

• •

•

• •

e. Show a maximum-height red-black tree containing 15 keys.

Solution: The idea is to extend one path from the root alternating red and black and
to extend the other subtrees to obey the rules while using as few nodes as possible. The
height of such a tree is constrained by its relationship to (2,4) trees and the fact that at
most, a (2,4) node translates to a subtree of height 1.

•

•

•

•

•

• •

•

•

•

• •

•

• •

Copyright (c) 2011 by P. N. Hilfinger. Reproduction prohibited.



Test #3 Solutions

DO    
 N

OT

REPRODUCE

7

3. [2 points] A certain proposed implementation of a set type uses an open-address hash table
implementation (with an ArrayList to hold the values), and does not allow null values in the set.
It has the following implementation for its remove method:

/** Remove OBJ != null from the table. Returns true if OBJ was in

* the table, and otherwise false. */

public boolean remove(Object obj) {

if (obj == null)

throw new IllegalArgumentException("null value in set");

int hash = obj.hashCode() % _values.size();

if (hash < 0)

hash = -hash;

int i;

i = hash;

do {

if (_values.get(i) == null)

break;

if (obj.equals(_values.get(i))) {

_values.put(i, null);

return true;

}

i = (i + 1) % _values.size();

} while (i != hash);

return false;

}

A simple unit test for this method seems to show that it works. But although the hash-table
implementation throws no exceptions for valid input (in this or other methods), there seems to
be a problem, which you suspect might be due to remove. What is wrong, and what test would
reveal it?

Solution: When you remove an entry, you set the array slot that contained it to null, which
cuts off any search for other members in the same bucket of the hash table. A possible test
would be to insert two objects known to have the same hash code, remove the first, and then
search for the second.

Copyright (c) 2011 by P. N. Hilfinger. Reproduction prohibited.



Test #3 Solutions

DO    
 N

OT

REPRODUCE

8

4. [1 point] What is the source of the following lines?

La fleur que tu m’avais jetée,
Dans ma prison m’était restée,
Flétrie et sèche, cette fleur
Gardait toujours sa douce odeur. . . .

Solution: Bizet’s opera Carmen.

5. [2 points] The following fragment of a program compiles, but has what are almost certainly
two bugs. Indicate clearly how to fix them.

public class Distributor {

/** A new Distributor with N outlets. */

public Distributor(int N) {

// ERROR: local variable outlets shadows the private instance variable.
ArrayList<Outlet> _outlets = new ArrayList<Outlet>();

// CORRECTED LINE: _outlets = new ArrayList<Outlet>();

for (int i = 0; i < N; i += 1) {

_outlets.add(new Outlet(i));

}

}

/** Current number of outlets. */

public int size() {

return _outlets.size();

}

/** Turn off outlet #K. */

public void close(int k) {

_outlets.get(k).close();

}

/** Remove all closed outlets. */

public void demolish() {

for (Iterator<Outlet> it = _outlets.iterator(); it.hasNext(); ) {

Outlet out = it.next();

if (out.isClosed())

// ERROR: attempt to modify outlets while iterating through it.
_outlets.remove(out);

// CORRECTED LINE: it.remove();

}

}

private ArrayList<Outlet> _outlets;

}

Copyright (c) 2011 by P. N. Hilfinger. Reproduction prohibited.



Test #3 Solutions

DO    
 N

OT

REPRODUCE

9

6. [5 points] Lazy data structures resemble their non-lazy (or strict) counterparts except that
they compute the results of accessors (e.g., .get on a list) only when they are needed the first
time, saving the result. Any subsequent calls to an accessor with the same arguments then simply
returns the previously computed value. Thus, the data structure grows only in response to need.
In CS61A, streams had this property.

The type LazyTree, below, is one such structure. A LazyTree is a binary tree node that
has operations getLabel, getLeft, and getRight, which provide its label and its left and right
children, as for an ordinary binary tree. To create a LazyTree node, one supplies a TreeFormer

argument, which returns the node label and subtrees upon demand. However, a given TreeFormer

is to be consulted at most three times during the lifetime of its tree node: once for the label, once
for the left child, and once for the right. If the program asks a LazyTree for the label or a subtree
from a node more than once, the second and subsequent requests return the previously computed
value without reconsulting the TreeFormer.

/** Supplies the label (of generic type T) and tree formers for the

* left and right children of a tree node. */

public abstract class TreeFormer<T> {

public abstract T label();

public abstract LazyTree<T> left();

public abstract LazyTree<T> right();

};

/** A binary tree whose contents are constructed as needed

* from TreeFormers. The empty tree is represented by null. */

public class LazyTree<T> {

public LazyTree(TreeFormer<T> former) {

_former = former;

}

T getLabel() {

if (!_haveLabel) { _haveLabel = true; _label = _former.label(); }

return _label;

}

T getLeft() {

if (!haveLeft) { _haveLeft = true; _left = _former.left(); }

return _left;

}

T getRight() {

if (!_haveRight) { _haveRight = true; _right = _former.right(); }

return _right;

}

private TreeFormer<T> _former;

private boolean _haveLeft, _haveRight, _haveLabel;

private T _label;

private LazyTree<T> _left, _right;

}

Copyright (c) 2011 by P. N. Hilfinger. Reproduction prohibited.



Test #3 Solutions

DO    
 N

OT

REPRODUCE

10

a. [3 points] Fill in the function below to obey its comment. Feel free to add any additional
classes you need.

/** Returns a lazy tree that contains elements L through U of a sorted

* array A as a balanced binary search tree. For example, if A is

* {1, 2, 3, 4, 5, 6, 7, 8}, the tree resulting from toBST(A, 0, 7) is

* 4

* / \

* 2 6

* / \ / \

* 1 3 5 7

* \

* 8

* As illustrated here, when the subtrees are uneven, the extra element goes

* on the right.

*/

LazyTree<String> toBST(String[] A, int L, int U) {

if (L > U)

return null;

else

return new LazyTree(new Balanced(A, L, U));

}

class Balanced extends TreeFormer<String> {

Balanced(String[] A, int L, int U) {

_A = A; _L = L; _U = U;

}

String label() {

return _A[(_L+_U) / 2];

}

LazyTree<String> left() {

if (_L > _U)

return null;

else

return new Balanced(_A, _L, _U-1);

}

LazyTree<String> right() {

if (_L > _U)

return null;

else

return new Balanced(_A, _L+1, _U);

}

private String[] _A;

private int _L, _U;

}

Copyright (c) 2011 by P. N. Hilfinger. Reproduction prohibited.



Test #3 Solutions

DO    
 N

OT

REPRODUCE

11

b. [2 points] Suppose I wanted to test another implementation of LazyTree by checking the
properties that its nodes consult their TreeFormers at most once to get their labels and
children and do not consult their TreeFormers for any labels or children that the client
does not request (by calls to the getLeft, getRight, and getLabel methods). Describe in
sufficient detail JUnit tests to check these properties.

There are many solutions. One way is to define a

TreeFormer extension that keeps a static variable that counts the

total number of times the label, left, and right methods are called.

Then create a tree, partially traverse some of its nodes in some

irregular pattern, and check the value of the static variable.

Copyright (c) 2011 by P. N. Hilfinger. Reproduction prohibited.


