
CS 61B Discussion 11: Review Fall 2015
1 Balanced Search Trees

(a) Convert the red-black tree into a 2-4 tree.

27

12

8 19

14 25

33

31 46

[12, 27, 33]

[8] [14, 19, 25] [31] [46]

(b) Insert 13 into the 2-4 tree.

[12, 27, 33]

[8] [14, 19, 25] [31] [46]

⇒

[27]

[12, 19]

[8] [13,14] [25]

[33]

[31] [40]

(c) Convert the resulting 2-4 tree into a valid red-black tree.

27

12

8 19

14

13

25

33

31 46

CS 61B, Fall 2015, Discussion 11: Review 1

2 Tries
First, list the words encoded by the trie. Then draw the trie after inserting the words indent, inches,
and trie. Ignore case.

I

N

C

H

D

E

X

F

O

I

N

C

H

E

S

D

E

N

T

X

F

O

T

R

I

E

Encoded words: index, info, inch

CS 61B, Fall 2015, Discussion 11: Review 2

3 Runtime Analysis
(a) Give the best and worst case runtimes for method A in Θ(·).

public boolean A(int[] arr, int x) {
//Assume arr is sorted; N is arr.length
return A(arr, x, 0 , arr.length-1);

}

public boolean A(int[] arr, int x, int low, int high) {
if (low > high) return false;
int mid = (low + high) / 2;
if (arr[mid] == x) return true;
return A(arr, x, low, mid-1) || A(arr, x, mid+1, high);

}

This is almost binary search, except that both halves are recursed on.
Best case: Θ(1). Worst case: Θ(N).

(b) Give the best and worst case runtimes for method B in Θ(·).
public boolean B(int[] arr) {

//N is arr.length
int count = arr.length - 1;
while(count > 0) {

count = count - arr.length / 50;
}
return count;

}

No matter how big the input array is, the loop will only execute about 50 times.
Best case: Θ(1). Worst case: Θ(1).

CS 61B, Fall 2015, Discussion 11: Review 3

