
CS 61B Discussion 11: Review Fall 2015
1 Balanced Search Trees

(a) Convert the red-black tree into a 2-4 tree.
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(b) Insert 13 into the 2-4 tree.
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(c) Convert the resulting 2-4 tree into a valid red-black tree.
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2 Tries
First, list the words encoded by the trie. Then draw the trie after inserting the words indent, inches,
and trie. Ignore case.
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Encoded words: index, info, inch
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3 Runtime Analysis
(a) Give the best and worst case runtimes for method A in Θ(·).

public boolean A(int[] arr, int x) {
//Assume arr is sorted; N is arr.length
return A(arr, x, 0 , arr.length-1);

}

public boolean A(int[] arr, int x, int low, int high) {
if (low > high) return false;
int mid = (low + high) / 2;
if (arr[mid] == x) return true;
return A(arr, x, low, mid-1) || A(arr, x, mid+1, high);

}

This is almost binary search, except that both halves are recursed on.
Best case: Θ(1). Worst case: Θ(N).

(b) Give the best and worst case runtimes for method B in Θ(·).
public boolean B(int[] arr) {

//N is arr.length
int count = arr.length - 1;
while(count > 0) {

count = count - arr.length / 50;
}
return count;

}

No matter how big the input array is, the loop will only execute about 50 times.
Best case: Θ(1). Worst case: Θ(1).
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