CS 61B

1 A* Search

For the graph below, let $g(u, v)$ be the weight of the edge between any nodes u and v. Let $h(u, v)$ be the value returned by the heuristic for any nodes u and v.

a) Given the weights and heuristic values for the graph below, what path would A^{*} search return, starting from A and with G as a goal?
b) Is the heuristic admissible? Why or why not?

2 Minimum Spanning Trees

a) Perform Prim's algorithm to find the minimum spanning tree of the following graph. Pick A as the initial node. Whenever there are more than one node with the same cost, process them in alphabetical order.
b) Use Kruskal's algorithm to find a minimum spanning tree.
c) There are quite a few MSTs here. How many can you find?

