CS 61B Discussion 2: Pointers Fall 2015

1 Boxes and Pointers

Draw a box and pointer diagram to represent the IntLists after each statement.

IntList L = IntList.list (1, 2, 3, 4);
IntList M = L.tail.tail;

N = IntList.list (5, 6, 7);
N.tail.tail.tail = N;

L.tail.tail = N.tail.tail.tail.tail;
M.tail.tail = L;

2 Shifting a Linked List

Implement the following methods to circularly shift an IntList to the left destructively and non-
destructively.

/++ Destructively shifts the elements of the given IntList L to
* the left by one position (e.g. if the original 1ist 1is
* (5, 4, 9, 1, 2, 3) then this method should return the 1list
~ (4, 9, 1, 2, 3, 5)). Returns the first node in the shifted 1list.
* Don’t use ’‘new’; modify the original IntList. #*/
public static IntList shiftListDestructive (IntList L) {

CS 61B, Fall 2015, Discussion 2: Pointers

/*+ Non-destructively shifts the elements of the given IntList L
* to the left by one position. Returns the first node in the shifted 1ist.

* Don’t modify the original IntList. =/
public static IntList shiftListNondestructive (IntList L) {

3 Palindrome

Implement the following two methods which determine whether an IntList is a palindrome.

/#** Non-destructively reverses an IntList L.
* Do not modify the original IntList. */
public static IntList reverseNondestructive (IntList L) {

/*% Returns whether the IntList L is a palindrome or not,
* or 1if it reads the same backwards as forwards. Hint: you may

* want to use reverseNondestructive. x*/
public static boolean isPalindrome (IntList L) {

CS 61B, Fall 2015, Discussion 2: Pointers

