CS 61B Discussion 5: Inheritance |l Fall 2015
1 Reduce

We’d like to write a method reduce, which uses a binary function to accumulate the values of
a List of integers into a single value. reduce will need to take in an object that can operate
(through a method) on two integer arguments and return a single integer. Note that reduce must
work with a range of binary functions (addition and multiplication, for example). Fill in reduce
and main, and define types for add and mult in the space provided.

import java.util.ArrayList;

import java.util.List;

public class ListUtils {
/#** Apply a function of two arguments cumulatively to the
* elements of list and return a single accumulated value. */
static int reduce(func, List<Integer> list) {

}
public static void main(String[] args) {
ArrayList<Integer> integers = new ArrayList<>();
integers.add(2); integers.add(3); integers.add(4);
add = ;
mult = ;
reduce (add, integers); //Should evaluate to 9
reduce (mult, integers); //Should evaluate to 24

//Add additional classes and interfaces below:

CS 61B, Fall 2015, Discussion 5: Inheritance 11 1

O 0 N N R W N -

_ = =
[S

13

2 Exception Handling

Below is an implementation of a Farm class. Its only field is an ArrayList of animals, and
it has three methods: getAnimal, addAnimal, and animalCount. getAnimal takes an

integer i as an argument and returns the i element of the farm’s list of animals.

This implementation produces an IndexOutOfBoundsException when we try to get an
animal at an index outside of the bounds of our internal ArrayList. This could be confus-
ing to a user with no knowledge of our implementation of the Farm class. Instead, rewrite the
getAnimal method so that it catches ITndexOutOfBoundsExceptions and throws a more

descriptive I1legalArgumentException.

import java.util.ArrayList;
public class Farm{

}

private Arraylist<Animal> animals = new ArrayList<>();

/+* Adds an animal toAdd to the farm. x*/

void addAnimal (Animal toAdd) {
animals.add (toAdd) ;

}

/*+ Takes an index between 0 and animalCount () - 1 (inclusive)
* and returns the animal at that index. x/
Animal getAnimal (int index) {
return animals.get (index) ;

}

/** Returns the number of animals on the farm. */
int animalCount () {
return animals.size();

}

Animal getAnimal (int index) {

3 Comparator

We’d like to sort an ArrayList of animals into ascending order, by age. We can accomplish this
using Collections.sort (List<T> list, Comparator<? super T> c). Because
instances of the Animal class (reproduced below) have no natural ordering, sort requires that
we write an implementation of the Comparator interface that can provide an ordering for us.

CS 61B, Fall 2015, Discussion 5: Inheritance 11

Note that an implementation of Comparator only needs to support pairwise comparison (see
the compare method). Remember that we would like to sort in ascending order of age, so an

Animal thatis 3 years old should be considered "less than" one that is 5 years old.

public interface Comparator<T> ({
/++ Compares 1its two arguments for order.

* Returns a negative integer, zero, or a positive integer if the first

* argument is less than, equal to, or greater than the second. */
int compare(T ol, T 02);

/++ Indicates whether some other object is "equal to" this
* comparator. */
boolean equals (Object obj);

}

import java.util.ArrayList;

import java.util.Collections;

public class Animal {
protected String name, noise;
protected int age;
public Animal (String name, int age) {

this.name = name;
this.age = age;
this.noise = "Huh?";

}

/#*% Returns this animal’s age. *x/

public int getAge () {
return this.age;

}

public static void main(String[] args) {
ArraylList<Animal> animals = new ArrayList<>();
animals.add (new Cat ("Garfield", 4));
animals.add (new Dog ("Biscuit", 2));

; //Initialize comparator

Collections.sort (animals,) ;

}

import java.util.Comparator;
public class AnimalComparator implements Comparator< > |

CS 61B, Fall 2015, Discussion 5: Inheritance 11

