
CS 61B Discussion 5: Inheritance II Fall 2015
1 Reduce
We’d like to write a method reduce, which uses a binary function to accumulate the values of
a List of integers into a single value. reduce will need to take in an object that can operate
(through a method) on two integer arguments and return a single integer. Note that reduce must
work with a range of binary functions (addition and multiplication, for example). Fill in reduce
and main, and define types for add and mult in the space provided.
import java.util.ArrayList;
import java.util.List;
public class ListUtils {

/** Apply a function of two arguments cumulatively to the

* elements of list and return a single accumulated value. */
static int reduce(BinaryFunction func, List<Integer> list) {

if(list.size() == 0){
return 0;

}
int soFar = list.get(0);
for(int i = 1; i < list.size(); i++){

soFar = func.apply(soFar, list.get(i));
}
return soFar;

}
public static void main(String[] args) {

ArrayList<Integer> integers = new ArrayList<>();
integers.add(2); integers.add(3); integers.add(4);
Adder add = new Adder();
Multiplier mult = new Multiplier();
reduce(add, integers); //Should evaluate to 9
reduce(mult, integers); //Should evaluate to 24

}
}

//Add additional classes and interfaces below:
interface BinaryFunction {

int apply(int x, int y);
}

class Adder implements BinaryFunction {
public int apply(int x, int y){

return x + y;
}

}

class Multiplier implements BinaryFunction {
public int apply(int x, int y){

return x * y;
}

}

CS 61B, Fall 2015, Discussion 5: Inheritance II 1

We declare an interface BinaryFunction which our Adder and Multiplier classes can
implement. Writing a common interface is important, because it allows us to write a reduce
function that is capable of accepting many kinds of functions. Note that interface methods are
public by default, so apply must be public in Adder and Multiplier.

2 Exception Handling
Below is an implementation of a Farm class. Its only field is an ArrayList of animals, and
it has three methods: getAnimal, addAnimal, and animalCount. getAnimal takes an
integer i as an argument and returns the ith element of the farm’s list of animals.

This implementation produces an IndexOutOfBoundsException when we try to get an an-
imal at an index outside of the bounds of our internal ArrayList. This could be confusing to a
user with no knowledge of our implementation of the Farm class. Instead, rewrite the getAnimal
method so that it catches IndexOutOfBoundsExceptions and throws a more descriptive
IllegalArgumentException.

1 import java.util.ArrayList;
2 public class Farm{
3 private ArrayList<Animal> animals = new ArrayList<>();
4

5 /** Adds an animal toAdd to the farm. */
6 void addAnimal(Animal toAdd){
7 animals.add(toAdd);
8 }
9

10 /** Takes an index between 0 and animalCount() - 1 (inclusive)
11 * and returns the animal at that index. */
12 Animal getAnimal(int index){
13 return animals.get(index);
14 }
15

16 /** Returns the number of animals on the farm. */
17 int animalCount(){
18 return animals.size();
19 }
20 }

Animal getAnimal(int index){
try {

return animals.get(index);
} catch(IndexOutOfBoundsException e){

throw new IllegalArgumentException
("Must pass in an index between 0 and animalCount() - 1");

}
}

When writing code that handles exceptions, the first step is to wrap the code that could cause an
exception in a try clause. In this case, we wrap return animals.get(index) in a try,
because it is at risk of throwing an IndexOutOfBoundsException. We associate exception
handlers with a try block by following it with a catch block that handles whatever exception is
specified by its argument. We specify that we are only looking to catch IllegalArgumentExceptions

CS 61B, Fall 2015, Discussion 5: Inheritance II 2

so that we can still see other kinds of exceptions (what would happen if we caught Exception
e?) Finally, we raise a custom exception with the throw keyword.

3 Comparator
We’d like to sort an ArrayList of animals into ascending order, by age. We can accomplish this
using Collections.sort(List<T> list, Comparator<? super T> c). Because
instances of the Animal class (reproduced below) have no natural ordering, sort requires that
we write an implementation of the Comparator interface that can provide an ordering for us.
Note that an implementation of Comparator only needs to support pairwise comparison (see
the compare method). Remember that we would like to sort in ascending order of age, so an
Animal that is 3 years old should be considered "less than" one that is 5 years old.

1 public interface Comparator<T> {
2 /** Compares its two arguments for order.
3 * Returns a negative integer, zero, or a positive integer if the first
4 * argument is less than, equal to, or greater than the second. */
5 int compare(T o1, T o2);
6

7 /** Indicates whether some other object is "equal to" this
8 * comparator. */
9 boolean equals(Object obj);

10 }

1 import java.util.ArrayList;
2 import java.util.Collections;
3 public class Animal {
4 protected String name, noise;
5 protected int age;
6 public Animal(String name, int age) {
7 this.name = name;
8 this.age = age;
9 this.noise = "Huh?";

10 }
11 /** Returns this animal’s age. */
12 public int getAge() {
13 return this.age;
14 }
15 public static void main(String[] args) {
16 ArrayList<Animal> animals = new ArrayList<>();
17 animals.add(new Cat("Garfield", 4));
18 animals.add(new Dog("Biscuit", 2));
19 AnimalComparator c = new AnimalComparator(); //Initialize comparator
20 Collections.sort(animals, c);
21 }
22 }

import java.util.Comparator;
public class AnimalComparator implements Comparator<Animal> {

public int compare(Animal o1, Animal o2) {
return o1.getAge() - o2.getAge();

}
}

CS 61B, Fall 2015, Discussion 5: Inheritance II 3

We want to implement Comparator<Animal> because we are concerned with comparing ob-
jects of type Animal. Similarly, compare should take objects of type Animal. We would like
younger animals to be considered "less than" older animals, so in compare we can simply re-
turn o1.getAge() - o2.getAge() (this way, we return a negative integer if o1 is younger
than o2, zero if the two animals are the same age, and a positive integer if o2 is younger than
o1). Collections.sort’s second argument is a Comparator, so we initialize our custom
implementation on line 21 and pass it in on 22.

CS 61B, Fall 2015, Discussion 5: Inheritance II 4

