
CS 61B Sorting and Hashing Fall 2015

1 Heaps of fun R©
(a) Assume that we have a binary min-heap (smallest value on top) data structue called Heap

that stores integers and has properly implemented insert and removeMin methods. Draw the
heap and its corresponding array representation after each of the operations below:
Heap h = new Heap(5); //Creates a min-heap with 5 as the root
[5] 5
h.insert(7);
[5,7] 5

/
7

h.insert(3);
[3,7,5] 3

/ \
7 5

h.insert(1);
[1,3,5,7] 1

/ \
3 5

/
7

h.insert(2);
[1,2,5,7,3] 1

/ \
2 5

/ \
7 3

h.removeMin();
[2,3,5,7] 2

/ \
3 5

/
7

h.removeMin();
[3,7,5] 3

/ \
7 5

(b) Consider an array based min-heap with N elements. What is the worst case running time of
each of the following operations if we ignore resizing? What is the worst case running time
if we take into account resizing? What are the advantages of using an array based heap vs.
using a node-based heap?
Insert θ(log N)
Find Min θ(1)
Remove Min θ(log N)

Accounting for possible resizing:
Insert θ(N)

CS 61B, Fall 2015, Sorting and Hashing 1



Find Min θ(1)
Remove Min θ(logN) (Java data structures in general do not size down.

Suppose you did have a data structure that resized down, perhaps
after reaching half capacity, you would have to recreate a new
smaller array and copy the elements into that array, thus running in
θ(N))

Using a tree/node representation is not as space-efficient. For an array
based heap, you simply need to keep a cell for each element. For a
tree, you need to have pointers to your children in addition to a
field for you own value.

(c) Your friend Alyssa P. Hacker challenges you to quickly implement a max-heap data struc-
ture - "Hah! I’ll just use my min-heap implementation as a template", you think to yourself.
Unfortunately, your arch-nemesis Malicious Mallory deletes your min-heap.java file. You
notice that you still have the min-heap.class file; could you use it to complete the challenge?
Yes. For every insert operation negate the number and add it to the min-heap. For a remove-
Max operation call removeMin on the min-heap and negate the number returned.

2 HashMap Modification (from 61BL SU2010 MT2)
(a) When you modify a key that has been inserted into a HashMap will you be able to retrieve

that entry again? Explain?

� Always � Sometimes � Never

It is possible that the new Key will end up colliding with the old Key. Only in this rare
situation will we be able to retrieve the value. It is very bad to modify the Key in a Map
because we cannot guarantee that the data structure will be able to find the object for us if
we change the Key.

(b) When you modify a value that has been inserted into a HashMap will you be able to retrieve
that entry again? Explain?

� Always � Sometimes � Never

You can safely modify the value without any trouble. If you reference the value that you put
in the tree, the changes will be reflected.

3 Hash Codes
(a) Suppose that we represent Tic-Tac-Toe boards as 3 by 3 arrays of integers (each of which is in

the range 0 to 2). Describe a good hash function for Tic-Tac-Toe boards that are represented
in this manner. Try to come up with one such that boards that are not equal will never have
the same hash code.
We can interpret the Tic-Tac-Toe board as a nine digit base 3 number, and use this as the
hash code. More concretely, if the array used to store the Tic-Tac-Toe board was called
board, then we could compute the hash code as follows:

board[0][0]+3 ·board[0][1]+32 ·board[0][2]+33 ·board[1][0]+ . . .+38 ·board[2][2]

CS 61B, Fall 2015, Sorting and Hashing 2



This hash code actually guarantees that any two distinct Tic-Tac-Toe boards will always have
distinct hash codes (in most situations this property is not feasible). Another thing to note
is that if we used this same idea on boards of size N×N then it would take Θ(N2) time to
compute.

(b) Is it possible to add arbitrarily many Strings to a Java HashSet with no collisions? If not,
what is the minimum number of distinct Strings you need to add to a HashSet to guarantee a
collision?
No, it is not possible. Ideally, we should be able to make arbitrarily large hash codes and
keep resizing the HashSet’s underlying array as many times as necessary (which would mean
we could add arbitrarily many Strings to a HashSet without collisions). However, in Java this
is not possible. There are several reasons for this:

1) In Java, the hashCode method must return an int, which must have a value between −231

and 231− 1. This means that there are only 232 possible distinct hashCodes, so if we add
232 +1 distinct Strings then we are guaranteed that two of them will have the same hashCode.

2) In Java, arrays have a maximum size of 231 − 1. So we cannot resize the HashSet’s
underlying array past this point. So if we add 231 Strings then we are guaranteed that two of
them will be put in the same bucket (though they might not have the same hashCode).

3) In Java’s implementation of HashSet, the size of the underlying array is always a power
of two. Thus the maximum size of the underlying array is 230, so if we add 230 + 1 Strings
then we are guaranteed that two of them will be put in the same bucket.

So the final answer is that 230 +1 is the minimum number of Strings required to guarantee a
collision. You aren’t expected to be able to come up with this exact number yourself, since it
depends on the specific implementation details of Java’s HashSet. Understanding the basic
reasoning is enough (for instance, (1) is a good answer, though not technically correct).

4 Bonus Question
Describe a way to implement a linked list of Strings so that removing a String from the list takes
constant time. You may assume that the list will never contain duplicates.
Use a doubly linked list and a HashMap whose keys are the Strings in the list and whose values are
pointers to the nodes of the list. Then when removing a String, look up the corresponding node in
the HashMap and delink that node from the list.

See Java’s LinkedHashMap data structure to see how this might be implemented.

CS 61B, Fall 2015, Sorting and Hashing 3


