1 Basic Algorithmic Analysis

For each of the following function pairs \(f \) and \(g \), list out the \(\Theta, \Omega, O \) relationships between \(f \) and \(g \), if any such relationship exists. The \(\log \) function here denotes the natural logarithm.

1. \(f(x) = x^2, g(x) = x^2 + x \)
2. \(f(x) = 5000000x^3, g(x) = x^5 \)
3. \(f(x) = \log(x), g(x) = 5x \)
4. \(f(x) = e^x, g(x) = x^5 \) (hint: \(5 > e \))
5. \(f(x) = \log(5^x), g(x) = x \)

2 Practice with Runtime

For each of the following functions, find the Big-Theta expression for the runtime of the function in terms of the input variable \(n \).

1. For this problem, you may assume that the static method \(\text{constant}(\text{int}) \) runs in \(\Theta(1) \) time.
   ```java
   public static void thisIsANestedLoop(int n) {
       for (int i = 0; i < n; i += 1) {
           for (int j = 0; j < i; j += 1) {
               System.out.println(i + j);
           }
       }
       for (int k = 0; k < n; k += 1) {
           constant(k);
       }
   }
   ```

2. ```java
 public static void thisIsMoreConfusing(int n) {
 for (int i = 1; i <= n; i *= 2) {
 for (int j = 0; j < i; j += 1) {
 System.out.println("moo");
 }
 }
 }
   ```
A Bit with some Bits

Complete the following method such that it does what it is intended to do: given a list of integers, it returns an integer such that the i-th bit of the return value is 1 if and only if a majority of integers in the list have 1 in the i-th bit.

Note: the solution to this question isn’t very complicated, but it’s not short! Try breaking it down into components, and ask your neighbors for help!

```java
public static int bitVote(int[] bitList) {
 for (int i = 0; i < 32; i++) {
 // For each bit index
 for (int k : bitList) {
 // For each integer
 }
 }
}
```