CS61B Lecture #14: Integers

Announcement:

- Programming contest SATURDAY, OCT 8! Details to follow.
Integer Types and Literals

<table>
<thead>
<tr>
<th>Type</th>
<th>Bits</th>
<th>Signed?</th>
<th>Literals</th>
</tr>
</thead>
</table>
| byte | 8 | Yes | Cast from int: (byte) 3
None. Cast from int: (short) 4096 |
| short| 16 | Yes | 'a' // (char) 97
'
' // newline ((char) 10)
'	' // tab ((char) 8)
'\' // backslash
'A', '\101', '\u0041' // == (char) 65 |
| char | 16 | No | 123 |
| int | 32 | Yes | 0100 // Octal for 64
0x3f, 0xffffffff // Hexadecimal 63, -1 (!) |
| long | 64 | Yes | 123L, 01000L, 0x3fL
1234567891011L |

- Negative numerals are just negated (positive) literals.
- "N bits" means that there are 2^N integers in the domain of the type:
 - If signed, range of values is $-2^{N-1} .. 2^{N-1} - 1$.
 - If unsigned, only non-negative numbers, and range is $0 .. 2^N - 1$.

Last modified: Mon Sep 26 17:01:42 2016
Modular Arithmetic

• **Problem:** How do we handle overflow, such as occurs in $10000 \times 10000 \times 10000$?

• Some languages throw an exception (Ada), some give undefined results (C, C++)

• Java *defines* the result of any arithmetic operation or conversion on integer types to “wrap around”—modular arithmetic.

• That is, the “next number” after the largest in an integer type is the smallest (like “clock arithmetic”).

• E.g., (byte) 128 == (byte) (127+1) == (byte) -128

• In general,

 - If the result of some arithmetic subexpression is supposed to have type T, an n-bit integer type,
 - then we compute the real (mathematical) value, x,
 - and yield a number, x', that is in the range of T, and that is equivalent to x modulo 2^n.
 - (That means that $x - x'$ is a multiple of 2^n.)
Modular Arithmetic: Examples

• (byte) \((64\times8)\) yields 0, since \(512 - 0 = 2 \times 2^8\).

• (byte) \((64\times2)\) and (byte) \((127+1)\) yield -128, since \(128 - (-128) = 1 \times 2^8\).

• (byte) \((101\times99)\) yields 15, since \(9999 - 15 = 39 \times 2^8\).

• (byte) \((-30\times13)\) yields 122, since \(-390 - 122 = -2 \times 2^8\).

• (char) (-1) yields \(2^{16} - 1\), since \(-1 - (2^{16} - 1) = -1 \times 2^{16}\).
Modular Arithmetic and Bits

- Why wrap around?
- Java’s definition is the natural one for a machine that uses binary arithmetic.
- For example, consider bytes (8 bits):

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1100101</td>
</tr>
<tr>
<td>× 99</td>
<td>1100011</td>
</tr>
<tr>
<td>9999</td>
<td>100111</td>
</tr>
<tr>
<td>− 9984</td>
<td>100111</td>
</tr>
<tr>
<td>15</td>
<td>00001111</td>
</tr>
</tbody>
</table>

- In general, bit n, counting from 0 at the right, corresponds to 2^n.
- The bits to the left of the vertical bars therefore represent multiples of $2^8 = 256$.
- So throwing them away is the same as arithmetic module 256.
Negative numbers

• Why this representation for -1?

\[
\begin{array}{c|c}
1 & 00000001_2 \\
+ & 11111111_2 \\
\hline
= & 01|00000000_2 \\
\end{array}
\]

Only 8 bits in a byte, so bit 8 falls off, leaving 0.

• The truncated bit is in the \(2^8\) place, so throwing it away gives an equal number modulo \(2^8\). All bits to the left of it are also divisible by \(2^8\).

• On unsigned types (\texttt{char}), arithmetic is the same, but we choose to represent only non-negative numbers modulo \(2^{16}\):

\[
\begin{array}{c|c}
1 & 0000000000000001_2 \\
+ & 2^{16} - 1 \\
\hline
= & 2^{16} + 0 \\
\end{array}
\]

\begin{array}{c|c}
 & 1111111111111111_2 \\
\hline
= & 1|0000000000000000_2 \\
\end{array}
Conversion

• In general Java will silently convert from one type to another if this makes sense and no information is lost from value.

• Otherwise, cast explicitly, as in \((\text{byte}) \ x\).

• Hence, given

```java
byte aByte; char aChar; short aShort; int anInt; long aLong;

// OK:
anShort = aByte; anInt = aByte; anInt = aShort;
anInt = aChar; aLong = anInt;

// Not OK, might lose information:
anInt = aLong; aByte = anInt; aChar = anInt; aShort = anInt;
aShort = aChar; aChar = aShort; aChar = aByte;

// OK by special dispensation:
aByte = 13; // 13 is compile-time constant
aByte = 12+100 // 112 is compile-time constant
```

â‰–^shell
Promotion

• Arithmetic operations (+, *, ...) promote operands as needed.
• Promotion is just implicit conversion.
• For integer operations,
 - if any operand is long, promote both to long.
 - otherwise promote both to int.
• So,

 aByte + 3 == (int) aByte + 3 // Type int
 aLong + 3 == aLong + (long) 3 // Type long
 'A' + 2 == (int) 'A' + 2 // Type int
 aByte = aByte + 1 // ILLEGAL (why?)

• But fortunately,

 aByte += 1; // Defined as aByte = (byte) (aByte+1)

• Common example:

 // Assume aChar is an upper-case letter
 char lowerCaseChar = (char) ('a' + aChar - 'A'); // why cast?
Bit twiddling

- Java (and C, C++) allow for handling integer types as sequences of bits. No “conversion to bits” needed: they already are.

- Operations and their uses:

<table>
<thead>
<tr>
<th>Mask</th>
<th>Set</th>
<th>Flip</th>
<th>Flip all</th>
</tr>
</thead>
<tbody>
<tr>
<td>00101100</td>
<td>00101100</td>
<td>00101100</td>
<td>00101100</td>
</tr>
<tr>
<td>& 10100111</td>
<td></td>
<td>~ 10100111</td>
<td>~ 10100111</td>
</tr>
<tr>
<td>00100100</td>
<td>10101111</td>
<td>10001011</td>
<td>01011000</td>
</tr>
</tbody>
</table>

- Shifting:

<table>
<thead>
<tr>
<th>Left</th>
<th>Arithmetic Right</th>
<th>Logical Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101101 << 3</td>
<td>10101101 >> 3</td>
<td>10101100 >>> 3</td>
</tr>
<tr>
<td>01101000</td>
<td>11110101</td>
<td>00010101</td>
</tr>
</tbody>
</table>

 (-1) >>> 29?

 \[x << n \]

 \[x >> n \]

 \[(x >>> 3) & ((1<<5)-1) \]
Bit twiddling

- Java (and C, C++) allow for handling integer types as sequences of bits. No “conversion to bits” needed: they already are.

- Operations and their uses:

<table>
<thead>
<tr>
<th>Mask</th>
<th>Set</th>
<th>Flip</th>
<th>Flip all</th>
</tr>
</thead>
<tbody>
<tr>
<td>00101100</td>
<td>00101100</td>
<td>00101100</td>
<td></td>
</tr>
<tr>
<td>& 10100111</td>
<td>10100111</td>
<td>~ 10100111</td>
<td>~ 10100111</td>
</tr>
<tr>
<td>00100100</td>
<td>10101111</td>
<td>10001011</td>
<td>01011000</td>
</tr>
</tbody>
</table>

- Shifting:

<table>
<thead>
<tr>
<th>Left</th>
<th>Arithmetic Right</th>
<th>Logical Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101101 << 3</td>
<td>10101101 >> 3</td>
<td>10101100 >>> 3</td>
</tr>
<tr>
<td>01101000</td>
<td>11110101</td>
<td>00010101</td>
</tr>
</tbody>
</table>

\((-1) >>> 29\)?
\(= 7\).

- What is:

\(x << n\)?
\(x >> n\)?
\((x >>> 3) & ((1<<5)-1)\)?
Bit twiddling

- Java (and C, C++) allow for handling integer types as sequences of bits. No “conversion to bits” needed: they already are.

- Operations and their uses:

<table>
<thead>
<tr>
<th>Mask</th>
<th>Set</th>
<th>Flip</th>
<th>Flip all</th>
</tr>
</thead>
<tbody>
<tr>
<td>00101100</td>
<td>00101100</td>
<td>00101100</td>
<td></td>
</tr>
<tr>
<td>& 10100111</td>
<td>10100111</td>
<td>^ 10100111</td>
<td>~ 10100111</td>
</tr>
<tr>
<td>00100100</td>
<td>10101111</td>
<td>10001011</td>
<td>01011000</td>
</tr>
</tbody>
</table>

- Shifting:

<table>
<thead>
<tr>
<th>Left</th>
<th>Arithmetic Right</th>
<th>Logical Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101101 << 3</td>
<td>10101101 >> 3</td>
<td>10101100 >>> 3</td>
</tr>
<tr>
<td>01101000</td>
<td>11110101</td>
<td>00010101</td>
</tr>
</tbody>
</table>

- What is:

\[(-1) \ggg 2^9? \]
\[x \ll n? \]
\[x \gg n? \]
\[(x \ggg 3) \& ((1\ll 5)\!\!\!\!\!\!\!\!\!\!\!\!_1)? \]
Bit twiddling

- Java (and C, C++) allow for handling integer types as sequences of bits. No “conversion to bits” needed: they already are.

- Operations and their uses:

<table>
<thead>
<tr>
<th>Mask</th>
<th>Set</th>
<th>Flip</th>
<th>Flip all</th>
</tr>
</thead>
<tbody>
<tr>
<td>00101100</td>
<td>00101100</td>
<td>00101100</td>
<td></td>
</tr>
<tr>
<td>& 10100111</td>
<td>10100111</td>
<td>~ 10100111</td>
<td>~ 10100111</td>
</tr>
<tr>
<td>00100100</td>
<td>10101111</td>
<td>10001011</td>
<td>01011000</td>
</tr>
</tbody>
</table>

- Shifting:

<table>
<thead>
<tr>
<th>Left</th>
<th>Arithmetic Right</th>
<th>Logical Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101101 << 3</td>
<td>10101101 >> 3</td>
<td>10101100 >>> 3</td>
</tr>
<tr>
<td>01101000</td>
<td>11110101</td>
<td>00010101</td>
</tr>
</tbody>
</table>

\[(-1) >>> 29 \]

\[x << n \]

\[x >> n \]

\[(x >>> 3) & ((1<<5)-1) \]

- What is:

\[x \cdot 2^n \]

\[[x/2^n] \text{ (i.e., rounded down).} \]
Bit twiddling

- Java (and C, C++) allow for handling integer types as sequences of bits. No “conversion to bits” needed: they already are.

- Operations and their uses:

<table>
<thead>
<tr>
<th>Mask</th>
<th>Set</th>
<th>Flip</th>
<th>Flip all</th>
</tr>
</thead>
<tbody>
<tr>
<td>00101100</td>
<td>00101100</td>
<td>00101100</td>
<td>~ 10100111</td>
</tr>
<tr>
<td>& 10100111</td>
<td>10100111</td>
<td>~ 10100111</td>
<td>~ 10100111</td>
</tr>
<tr>
<td>00100100</td>
<td>10101111</td>
<td>10001011</td>
<td>01011000</td>
</tr>
</tbody>
</table>

- Shifting:

<table>
<thead>
<tr>
<th>Left</th>
<th>Arithmetic Right</th>
<th>Logical Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101101 << 3</td>
<td>10101101 >> 3</td>
<td>10101100 >>> 3</td>
</tr>
<tr>
<td>01101000</td>
<td>11110101</td>
<td>00010101</td>
</tr>
</tbody>
</table>

(-1) >>> 29? = 7.

x << n?

x >> n?

(x >>> 3) & ((1<<5)-1)? 5-bit integer, bits 3-7 of x.

What is:

= x · 2^n.

= [x/2^n] (i.e., rounded down).