CS61B Lecture #20: Trees
A Recursive Structure

• Trees naturally represent recursively defined, hierarchical objects with more than one recursive subpart for each instance.

• Common examples: expressions, sentences.
 - Expressions have definitions such as “an expression consists of a literal or two expressions separated by an operator.”

• Also describe structures in which we recursively divide a set into multiple subsets.
Fundamental Operation: Traversal

- Traversing a tree means enumerating (some subset of) its nodes.
- Typically done recursively, because that is natural description.
- As nodes are enumerated, we say they are visited.
- Three basic orders for enumeration (+ variations):
 - **Preorder**: visit node, traverse its children.
 - **Postorder**: traverse children, visit node.
 - **Inorder**: traverse first child, visit node, traverse second child (binary trees only).
Preorder Traversal and Prefix Expressions

Problem: Convert

\[- (- (* x (+ y 3))) z]\n
\(\Rightarrow (- (- (* x (+ y 3))) z)\)

(Assume Tree<Label> is means “Tree whose labels have type Label.”)

```java
static String toLisp(Tree<String> T) {
    if (T == null) return "";
    else if (T.degree() == 0) return T.label();
    else {
        String R; R = "";
        for (int i = 0; i < T.numChildren(); i += 1)
            R += " " + toLisp(T.child(i));
        return String.format("(%s%s)", T.label(), R);
    }
}
```
Inorder Traversal and Infix Expressions

Problem: Convert

\[
- \\
\downarrow \\
- \\
\uparrow \\
* \\
\downarrow \\
x + \\
\downarrow \\
y 3
\]

\[=((-(x\times(y+3))))-z)\]

To think about: how to get rid of all those parentheses.

```java
static String toInfix(Tree<String> T) {
    if (T == null)
        return "";
    if (T.degree() == 0)
        return T.label();
    else {
        String left = toInfix(T.left()), right = toInfix(T.right());
        return String.format("(%s%s%s)", left, T.label(), right);
    }
}
```
Postorder Traversal and Postfix Expressions

Problem: Convert

```
-  
  -  
    *  
      +  
        x  
        Y  
      3  
    3  
  z  
⇒ x y 3 +:2 *:2 -:1 z -:2
```

```java
static String toPolish(Tree<String> T) {
    if (T == null)
        return "";
    else {
        String R; R = "";
        for (int i = 0; i < T.numChildren(); i += 1)
            R += toPolish(T.child(i)) + " ";
        return String.format("%s%s:%d", R, T.label(), T.degree());
    }
}
```
A General Traversal: The Visitor Pattern

```java
void preorderTraverse(Tree<Label> T, Action<Label> whatToDo)
{
    if (T != null) {
        whatToDo.action(T);
        for (int i = 0; i < T.numChildren(); i += 1)
            preorderTraverse(T.child(i), whatToDo);
    }
}
```

- What is Action?

```java
interface Action<Label> {
    void action(Tree<Label> T);
}
```

Now, using Java 8 lambda syntax, I can print all labels in the tree in preorder with:

```java
preorderTraverse(myTree,
                 (Tree<String> T) -> System.out.print(T.label()));
```
Iterative Depth-First Traversals

- Tree recursion conceals data: a stack of nodes (all the T arguments) and a little extra information. Can make the data explicit:

```java
void preorderTraverse2(Tree<Label> T, Action whatToDo) {
    Stack<Tree<Label>> s = new Stack<>();
    s.push(T);
    while (!s.isEmpty()) {
        Tree<Label> node = s.pop();
        if (node != null) {
            whatToDo.action(node);
            for (int i = node.numChildren()-1; i >= 0; i -= 1)
                s.push(node.child(i)); // Why backward?
        }
    }
}
```

- To do a breadth-first traversal, use a queue instead of a stack, replace push with add, and pop with removeFirst.

- Makes breadth-first traversal worst-case linear time in all cases, but also linear space for “bushy” trees.
Level-Order (Breadth-First) Traversal

Problem: Traverse all nodes at depth 0, then depth 1, etc:

```
  0
 / \
1   2
/ \ / \  \
3  4 5   6
```
Breadth-First Traversal Implemented

A simple modification to iterative depth-first traversal gives breadth-first traversal. Just change the (LIFO) stack to a (FIFO) queue:

```java
void preorderTraverse2(Tree<Label> T, Action whatToDo) {
    ArrayDeque<Tree<Label>> s = new ArrayDeque<>(); // (Changed)
    s.push(T);
    while (!s.isEmpty()) {
        Tree<Label> node = s.remove(); // (Changed)
        if (node != null) {
            whatToDo.action(node);
            for (int i = 0; i < node.numChildren(); i += 1) // (Changed)
                s.push(node.child(i));
        }
    }
}
```
The traversal algorithms have roughly the form of the \textit{boom} example in §1.3.3 of \textit{Data Structures}—an exponential algorithm.

However, the role of M in that algorithm is played by the \textit{height} of the tree, not the number of nodes.

In fact, easy to see that tree traversal is \textit{linear}: $\Theta(N)$, where N is the \# of nodes: Form of the algorithm implies that there is one visit at the root, and then one visit for every \textit{edge} in the tree. Since every node but the root has exactly one parent, and the root has none, must be $N - 1$ edges in any non-empty tree.

In positional tree, is also one recursive call for each empty tree, but \# of empty trees can be no greater than kN, where k is arity.

For k-ary tree (max \# children is k), $h + 1 \leq N \leq \frac{k^{h+1} - 1}{k - 1}$, where h is height.

So $h \in \Omega(\log_k N) = \Omega(\log N)$ and $h \in O(N)$.

Many tree algorithms look at one child only. For them, time is proportional to the \textit{height} of the tree, and this is $\Theta(\log N)$, assuming that tree is \textit{bushy}—each level has about as many nodes as possible.
Recursive Breadth-First Traversal: Iterative Deepening

• For each level, k, of the tree from 0 to h, call `doLevel(T,k)`:

```java
void doLevel(Tree T, int lev) {
    if (lev == 0)
        visit T
    else
        for each non-null child, C, of T {
            doLevel(C, lev-1);
        }
}
```

• We do breadth-first traversal by repeated (truncated) depth-first traversals.

• In `doLevel(T, k)`, we skip (i.e., traverse but don’t visit) the nodes before level k, and then visit at level k, but not their children.
Iterative Deepening Time?

- Let h be height, N be # of nodes.
- Count # edges traversed (i.e, # of calls, not counting null nodes).
- First (full) tree: 1 for level 0, 3 for level 1, 7 for level 2, 15 for level 3.
- Or in general \[(2^1 - 1) + (2^2 - 1) + \ldots + (2^{h+1} - 1) = 2^{h+2} - h \in \Theta(N),\]
 since $N = 2^{h+1} - 1$ for this tree.
- Second (right leaning) tree: 1 for level 0, 2 for level 2, 3 for level 3.
- Or in general \[(h + 1)(h + 2)/2 = N(N + 1)/2 \in \Theta(N^2),\]
 since $N = h + 1$ for this kind of tree.
Iterators for Trees

- Frankly, iterators are not terribly convenient on trees.
- But can use ideas from iterative methods.

```java
class PreorderTreeIterator<Label> implements Iterator<Label> {
    private Stack<Tree<Label>> s = new Stack<Tree<Label>>() {
        
    public PreorderTreeIterator(Tree<Label> T) {
        s.push(T);
    }

    public boolean hasNext() {
        return !s.isEmpty();
    }

    public T next() {
        Tree<Label> result = s.pop();
        for (int i = result.numChildren() - 1; i >= 0; i -= 1)
            s.push(result.child(i));
        return result.label();
    }

    void remove() {
        throw new UnsupportedOperationException();
    }
}
```

Example: (what do I have to add to class Tree first?)

```java
for (String label : aTree) System.out.print(label + " ");
```
Tree Representation

(a) Embedded child pointers (+ optional parent pointers)

(b) Array of child pointers (+ optional parent pointers)

(c) child/sibling pointers

(d) breadth-first array (complete trees)