CS61B Lectures #27

Today:
- Shell's sort, Heap, Merge sorts
- Quicksort
- Selection

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.
Shell’s sort

Idea: Improve insertion sort by first sorting distant elements:

- First sort subsequences of elements \(2^k - 1\) apart:
 - sort items \#0, \(2^k - 1\), \(2(2^k - 1)\), \(3(2^k - 1)\), \ldots, then
 - sort items \#1, \(1 + 2^k - 1\), \(1 + 2(2^k - 1)\), \(1 + 3(2^k - 1)\), \ldots, then
 - sort items \#2, \(2 + 2^k - 1\), \(2 + 2(2^k - 1)\), \(2 + 3(2^k - 1)\), \ldots, then
 - etc.
 - sort items \#2^k - 2, \(2(2^k - 1) - 1\), \(3(2^k - 1) - 1\), \ldots,
 - Each time an item moves, can reduce \#inversions by as much as \(2^k + 1\).

- Now sort subsequences of elements \(2^{k-1} - 1\) apart:
 - sort items \#0, \(2^{k-1} - 1\), \(2(2^{k-1} - 1)\), \(3(2^{k-1} - 1)\), \ldots, then
 - sort items \#1, \(1 + 2^{k-1} - 1\), \(1 + 2(2^{k-1} - 1)\), \(1 + 3(2^{k-1} - 1)\), \ldots,
 -
- End at plain insertion sort (\(2^0 = 1\) apart), but with most inversions gone.

- Sort is \(\Theta(N^{1.5})\) (take CS170 for why!).
Example of Shell's Sort

<table>
<thead>
<tr>
<th>#I</th>
<th>#C</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#I</th>
<th>#C</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#I</th>
<th>#C</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#I</th>
<th>#C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#I</th>
<th>#C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

I: Inversions left.

C: Comparisons needed to sort subsequences.
Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we’ve already seen it in action: use heap.
- Gives $O(N \lg N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

original:	19	0	-1	7	23	2	42
heapified:	42	23	19	7	0	2	-1
	23	7	19	-1	0	2	42
	19	7	2	-1	0	23	42
	7	0	2	-1	19	23	42
	2	0	-1	7	19	23	42
	0	-1	2	7	19	23	42
	-1	0	2	7	19	23	42
Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
 - Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage.
- For internal sorting, can use binomial comb to orchestrate:
Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

0 elements processed

1 element processed

2 elements processed

3 elements processed

4 elements processed

6 elements processed

11 elements processed
Quicksort: Speed through Probability

Idea:

• \textit{Partition} data into pieces: everything $> a$ pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.

• Repeat recursively on the high and low pieces.

• For speed, stop when pieces are “small enough” and do insertion sort on the whole thing.

• Reason: insertion sort has low constant factors. By design, no item will move out of its piece [why?], so when pieces are small, \#inversions is, too.

• Have to choose pivot well. E.g.: \textit{median} of first, last and middle items of sequence.
Example of Quicksort

- In this example, we continue until pieces are size \(\leq 4 \).
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

<table>
<thead>
<tr>
<th>16</th>
<th>10</th>
<th>13</th>
<th>18</th>
<th>-4</th>
<th>-7</th>
<th>12</th>
<th>-5</th>
<th>19</th>
<th>15</th>
<th>0</th>
<th>22</th>
<th>29</th>
<th>34</th>
<th>-1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>-5</td>
<td>-7</td>
<td>-1</td>
<td>18</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>19</td>
<td>15</td>
<td>0</td>
<td>22</td>
<td>29</td>
<td>34</td>
<td>16*</td>
</tr>
<tr>
<td>-4</td>
<td>-5</td>
<td>-7</td>
<td>-1</td>
<td>15</td>
<td>13</td>
<td>12*</td>
<td>10</td>
<td>0</td>
<td>16</td>
<td>19*</td>
<td>22</td>
<td>29</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>-4</td>
<td>-5</td>
<td>-7</td>
<td>-1</td>
<td>10</td>
<td>0</td>
<td>12</td>
<td>15</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>29</td>
<td>34</td>
<td>22</td>
</tr>
</tbody>
</table>

- Now everything is “close to” right, so just do insertion sort:

| -7 | -5 | -4 | -1 | 0 | 10 | 12 | 13 | 15 | 16 | 18 | 19 | 22 | 29 | 34 |
Performance of Quicksort

• Probabalistic time:
 - If choice of pivots good, divide data in two each time: \(\Theta(N \lg N) \) with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: \(\Theta(N^2) \).
 - \(\Omega(N \lg N) \) in best case, so insertion sort better for nearly ordered input sets.

• Interesting point: randomly shuffling the data before sorting makes \(\Omega(N^2) \) time very unlikely!
Quick Selection

The Selection Problem: for given k, find k^{th} smallest element in data.

- Obvious method: sort, select element $\#k$, time $\Theta(N \lg N)$.

- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.

- Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
 - If $m = k$, you’re done: p is answer.
 - If $m > k$, recursively select k^{th} from left half of sequence.
 - If $m < k$, recursively select $(k - m - 1)^{\text{th}}$ from right half of sequence.
Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:

```
51  60  21 -4  37  4  49  10  40*  59  0  13  2  39  11  46  31
0
```

Looking for #10 to left of pivot 40:

```
13  31  21 -4  37  4*  11  10  39  2  0  40  59  51  49  46  60
0
```

Looking for #6 to right of pivot 4:

```
-4  0  2  4  37  13  11  10  39  21  31*  40  59  51  49  46  60
4
```

Looking for #1 to right of pivot 31:

```
-4  0  2  4  21  13  11  10  31  39  37  40  59  51  49  46  60
9
```

Just two elements: just sort and return #1:

```
-4  0  2  4  21  13  11  10  31  37  39  40  59  51  49  46  60
9
```

Result: 39
Selection Performance

• For this algorithm, if m roughly in middle each time, cost is

$$C(N) = \begin{cases}
1, & \text{if } N = 1, \\
N + C(N/2), & \text{otherwise}.
\end{cases}$$

$$= N + N/2 + \ldots + 1$$

$$= 2N - 1 \in \Theta(N)$$

• But in worst case, get $\Theta(N^2)$, as for quicksort.

• By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).