CS61B Lectures #28

Today:

- Lower bounds on sorting by comparison
- Distribution counting, radix sorts

Readings: Today: *DS(IJ)*, Chapter 8; Next topic: Chapter 9.
Better than $N \lg N$?

- Can prove that if all you can do to keys is compare them then sorting must take $\Omega(N \lg N)$.

- Basic idea: there are $N!$ possible ways the input data could be scrambled.

- Therefore, your program must be prepared to do $N!$ different combinations of move operations.

- Therefore, there must be $N!$ possible combinations of outcomes of all the if tests in your program (we’re assuming that comparisons are 2-way).

$$
\begin{array}{c}
\text{Height } \propto \text{Sorting time} \\
T \quad a < b \\
\quad b < c \\
\quad \quad \text{abc} \\
\quad \quad \text{acb} \\
\quad \quad \text{cab} \\
F \quad a < c \\
\quad b < c \\
\quad \quad \text{bac} \\
\quad \quad \text{bca} \\
\quad \quad \text{cba}
\end{array}
$$
Necessary Choices

• Since each if test goes two ways, number of possible different outcomes for \(k \) if tests is \(2^k \).

• Thus, need enough tests so that \(2^k > N! \), which means \(k \in \Omega(\lg N!) \).

• Using Stirling’s approximation,

\[
m! \in \sqrt{2\pi m} \left(\frac{m}{e} \right)^m \left(1 + \Theta \left(\frac{1}{m} \right) \right),
\]

this tells us that

\[k \in \Omega(N \lg N). \]
Beyond Comparison: Distribution

• But suppose can do more than compare keys?
• For example, how can we sort a set of N integer keys whose values range from 0 to kN, for some small constant k?
• One technique: put the integers into N buckets, with an integer p going to bucket p/k.
• At most k keys per bucket, so catenate and use insertion sort, which will now be fast.
• E.g., $k = 2, N = 10$:

Start:

14 3 10 13 4 2 19 17 0 9

In buckets:

| 0 | 3 2 | 4 | 9 | 10 | 13 | 14 | 17 | 19 |

• Now insertion sort is fast. For fixed k, $\Theta(N)$.
Distribution Counting

- Another technique: count the number of items < 1, < 2, etc.
- If $M_p = \#\text{items with value } < p$, then in sorted order, the j^{th} item with value p must be $\#M_p + j$.
- Gives linear-time algorithm.
Distribution Counting Example

- Suppose all items are between 0 and 9 as in this example:

 7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

- "Counts" line gives # occurrences of each key.
- "Running sum" gives cumulative count of keys \(\leq \) each value...
- ... which tells us where to put each key:
 - The first instance of key \(k \) goes into slot \(m \), where \(m \) is the number of key instances that are \(< k \).
Radix Sort

Idea: Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

Pass 1
(by char #2)

be cad can set
'('<d' 'n' 't'
be, cad, con, can, set, cat, bat, let, bet

Pass 2
(by char #1)

bat bet
cat let
'a' 'e' 'o'
cad, can, cat, bat, be, set, let, bet, con

Pass 3
(by char #0)

bet cat
be can
'b' 'c' 'l' 's'
bat, be, bet, cad, can, cat, con, let, set
MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

<table>
<thead>
<tr>
<th>A</th>
<th>posn</th>
</tr>
</thead>
<tbody>
<tr>
<td>★ set, cat, cad, con, bat, can, be, let, bet</td>
<td>0</td>
</tr>
<tr>
<td>★ bat, be, bet / cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / ★ be, bet / cat, cad, con, can / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / ★ cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / be / bet / ★ cat, cad, can / con / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / cad / can / cat / con / let / set</td>
<td></td>
</tr>
</tbody>
</table>
Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- To have N different records, must have keys at least $\Theta(lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- So $N \lg N$ comparisons really means $N(lg N)^2$ operations.
- While radix sort takes $B = N \lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.
And Don’t Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: \(N \) insertions in time \(\lg N \) each, plus \(\Theta(N) \) to traverse, gives

\[
\Theta(N + N \lg N) = \Theta(N \lg N)
\]
Summary

• Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
• Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
• Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
• Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
• Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.