Recursive Depth-First Traversal of a Graph

- Can fix looping and combinatorial problems using the “bread-crumb” method used in earlier lectures for a maze.
- That is, *mark* nodes as we traverse them and don’t traverse previously marked nodes.
- Makes sense to talk about *preorder* and *postorder*, as for trees.

```c
void preorderTraverse(Graph G, Node v) {
    if (v is unmarked) {
        mark(v);
        visit v;
        for (Edge(v, w) ∈ G) traverse(G, w);
    }
}

void postorderTraverse(Graph G, Node v) {
    if (v is unmarked) {
        mark(v);
        for (Edge(v, w) ∈ G) traverse(G, w);
        visit v;
    }
}
```
Recursive Depth-First Traversal of a Graph (II)

- We are often interested in traversing *all* nodes of a graph, not just those reachable from one node.
- So we can repeat the procedure as long as there are unmarked nodes.

```java
void preorderTraverse(Graph G) {
    for (v ∈ nodes of G) {
        preorderTraverse(G, v);
    }
}

void postorderTraverse(Graph G) {
    for (v ∈ nodes of G) {
        postorderTraverse(G, v);
    }
}
Topological Sorting

Problem: Given a DAG, find a linear order of nodes consistent with the edges.

• That is, order the nodes $v_0, v_1, \ldots$ such that $v_k$ is never reachable from $v_{k'}$ if $k' > k$.

• Gmake does this. Also PERT charts.
Observation: Suppose we reverse the links on our graph.

If we do a recursive DFS on the reverse graph, starting from node H, for example, we will find all nodes that must come before H.

When the search reaches a node in the reversed graph and there are no successors, we know that it is safe to put that node first.

In general, a postorder traversal of the reversed graph visits nodes only after all predecessors have been visited.

Numbers show post-order traversal order starting from G: everything that must come before G.
General Graph Traversal Algorithm

\[\text{COLLECTION\_OF\_VERTICES} \text{ fringe;}\]

\[
\text{fringe} = \text{INITIAL\_COLLECTION};
\]

while (!\text{fringe.isEmpty}()) {
    \text{Vertex } v = \text{fringe.REMOVE\_HIGHEST\_PRIORITY\_ITEM}();

    if (!\text{MARKED}(v)) {
        \text{MARK}(v);
        \text{VISIT}(v);
        \text{For each edge}(v,w) {
            if (\text{NEEDS\_PROCESSING}(w))
                \text{Add } w \text{ to fringe;}
        }
    }
}

Replace \text{COLLECTION\_OF\_VERTICES}, \text{INITIAL\_COLLECTION}, \text{etc.} with various types, expressions, or methods to different graph algorithms.
Example: Depth-First Traversal

**Problem:** Visit every node reachable from $v$ once, visiting nodes further from start first.

```
Stack<Vertex> fringe;
fringe = stack containing \{v\};
while (!fringe.isEmpty()) {
 Vertex v = fringe.pop();
 if (!marked(v)) {
 mark(v);
 VISIT(v);
 For each edge(v,w) {
 if (!marked(w))
 fringe.push(w);
 }
 }
}
```
Depth-First Traversal Illustrated

Marked: Z

Fringe: [a] [b, d] [c, e, d] [d, f, e, d] [f, e, d] [e, e, d] [e, d] []
Topological Sort in Action

Output: []

[A]

[A, C]

[A, C, B]

[A, C, B, F]

[A, C, B, F, D]

[A, C, B, F, D, E, G, H]
Shortest Paths: Dijkstra’s Algorithm

**Problem:** Given a graph (directed or undirected) with non-negative edge weights, compute shortest paths from given source node, \(s\), to all nodes.

- “Shortest” = sum of weights along path is smallest.
- For each node, keep estimated distance from \(s\), ...
- ...and of preceding node in shortest path from \(s\).

```java
PriorityQueue<Vertex> fringe;
For each node v { v.dist() = \(\infty\); v.back() = null; }
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (!fringe.isEmpty()) {
 Vertex v = fringe.removeFirst();

 For each edge(v,w) {
 if (v.dist() + weight(v,w) < w.dist())
 { w.dist() = v.dist() + weight(v,w); w.back() = v; }
 }
}
Example

Final result:

Shortest-path tree

X\(d\) processed node at distance \(d\)

Y\(d\) node in fringe at distance \(d\)