1 A* Search

For the graph below, let \(g(u, v) \) be the weight of the edge between any nodes \(u \) and \(v \). Let \(h(u, v) \) be the value returned by the heuristic for any nodes \(u \) and \(v \).

![Graph Diagram]

Edge weights:
- \(g(A, B) = 1 \)
- \(g(B, C) = 3 \)
- \(g(C, F) = 2 \)
- \(g(C, G) = 4 \)
- \(g(F, G) = 1 \)
- \(g(A, D) = 2 \)
- \(g(D, E) = 3 \)
- \(g(E, G) = 3 \)

Heuristics:
- \(h(A, G) = 8 \)
- \(h(B, G) = 6 \)
- \(h(C, G) = 5 \)
- \(h(F, G) = 1 \)
- \(h(D, G) = 6 \)
- \(h(E, G) = 3 \)

a) Given the weights and heuristic values for the graph below, what path would A* search return, starting from \(A \) and with \(G \) as a goal?

b) Is the heuristic admissible? Why or why not?
a) Perform Prim's algorithm to find the minimum spanning tree of the above graph. Pick A as
the initial node. Whenever there are more than one node with the same cost, process them in
alphabetical order.

b) Use Kruskal's algorithm to find a minimum spanning tree. Is it the same as the one found by
Prim's?

c) Draw the resulting WQU tree at the end of the execution of Kruskal's. When there are ties,
choose the root to be the alphabetically first node. (There may be multiple possible answers)