This homework is intended to give you a chance to better understand sorting and balanced search trees.
Navigation
 Implementing Sorting Algorithms
 Quicksort and Mergesort Mechanics (sortingProblems.txt)
 Sorting Problems
 LeftLeaning RedBlack Trees (LLRB)
 Making a Balanced Tree
 Submission
A. Implementing Sorting Algorithms
The skeleton, MySortingAlgorithms.java
provides a template for implementing various sorting algorithms.
Implement the algorithms below (the ones with an asterisk next to it are required). Clicking on the links will take you to an animation of the sort to refresh your memory.
 *Selection sort: Easier
 *Insertion sort: Easier
 *Mergesort: Moderate
 Distribution sort: Moderate
 Heapsort: Harder
 Quicksort: Harder
 *LSD radix sort: Harder
 MSD radix sort: Harder
You can use MySortingAlgorithmsTest.java
to test your implementations.
Once you're done, here are some questions to ponder (you don't need to record nor submit your responses):
 How many items are sorted in the video for selection sort?
 Why does insertion sort take longer/more compares than selection sort?
 At what time stamp does the first partition complete for Quicksort?
 Could the size of the input used by mergesort in the video be a power of 2?
 What do the colors mean for heapsort?
 How many characters are in the alphabet used for the LSD sort problem?
 How many digits are in the keys used for the LSD sort problem?
 The complete video ends with a rather odd sort that doesn't complete. Without looking at the captions, can you tell what it's doing?
 How does the standard sort from the GCC library, a form of quicksort, differ from the other version of quicksort shown?
Additionally, the RunBenchmarks
class runs timing tests on our
various sorts. Currently, it is configured to perform two timing
tests:
 Compare (y)our implementation against Arrays.sort (which uses
Quicksort
for ints).  Time insertion sort for almost sorted arrays.
Run the code, and you should see results that are in line with things we've learned in class.
If the second test takes too long to complete, you can "Edit Configurations" in IntelliJ and type a number for program arguments to run the test on a smaller input size.
Other interesting tests you might try:
 How do LSD and MSD compare with Quicksort and Mergesort? How large must N be before they become faster?
 Find a case where LSD is faster than MSD.
 For what N is insertion sort faster than Quicksort?
 How do selection sort and insertion sort compare?
Feel free to post interesting tests and/or observations on Piazza. You don't need to submit anything related to this Benchmark test.
B. Quicksort and Mergesort Mechanics (sortingProblems.txt)
Interestingly enough, quicksorting an array is equivalent to inserting all of its items into a BST. In this problem, we'll see why.
First, we need a specific implementation for partitioning.
Consider the array [5, 3, 2, 1, 7, 8, 4, 6]
, and suppose that
we pick the leftmost item 5 as our pivot. One approach to partitioning
is to perform a "stable" partitioning where all items that are less
than 5 appear in the same order as they did before partitioning, and
likewise for the greater items. For the given array, we'd get [3,
2, 1, 4, 5, 7, 8, 6]
.
One inefficient but simple way to implement this stable partitioning algorithm is to perform the following steps:
 Create three empty Lists for storing integers smaller, equal to, and larger than the pivot, respectively.
 Go through each item of the list, comparing it to the pivot, and adding items to the respective list based on the comparison.
 Concatenting the three Lists into a single concatenated List.
 Copying the concatenated List back into the array.
So for example if we partition [5, 3, 2, 1, 7, 8, 4, 6]
from index 0
to index 7, we'd get:
Smaller items: [3, 2, 1, 4]
Equal items : [5]
Larger items : [7, 8, 6]
The concatenation of these lists is just [3, 2, 1, 4, 5, 7, 8, 6]
.
Along the way, we compared the following pairs of numbers: 53, 52,
51, 54, 57, 58,
and 56
.
If we are using partition to sort, we then repeat this process for the left half and right half sides as discussed in class.
In sortingProblems.txt
, fill out the list of comparisons used by
Quicksort. You might find running Quicksort.java from the skeleton to
be useful.
BSTs (1b, 1c, 1d in sortingProblems.txt)
Now draw the BST that results when you insert [5, 3, 2, 1, 7, 8, 4, 6]
(in that order) into an initially empty BST. Record the comparions you
observe in sortingProblems.txt. Answer questions 1c and 1d in
sortingProblems.txt.
Mergesort (1e in sortingProblems.txt)
Finally, for 1e, give an example of a comparison performed by mergesort that is not performed by Quicksort or BST. This isn't particularly interesting, but we're just asking to make sure you understand how Mergesort works.
C. Sorting Problems
There are many problems for which sorting provides a fast solution, even though the problem isn't really about sorting. We encourage you to do all of these, but you only need to do any one of them for full credit.
Intervals (Intervals.java)
Define an interval to be a pair of numbers $[x_i, x_i']$ such that $x_i < x_i'$. An interval specifies a range of values in 1D space, where we can call $x_i$ the start point, and $x_i'$ the end point.
Given a list of such intervals, we want to know the total length of the regions covered by one or more of the intervals. This is not simply the sum of their lengths, $\Sigma x_i'  x_i$, since several may cover the same span.
For example, if we have intervals $[19, 30]$, $[6, 12]$, $[4, 5]$, $[8, 15]$, and $[3, 10]$, then the total length covered is 23: the last four intervals together totally cover the interval $[3, 15]$ of length 12, and the first covers a disjoint interval of length 11.
Fill in Intervals.java
so that the coveredLength
method returns the
correct total length in $\Theta(N log N)$ time.
There is a clever trick to this problem that you'll need to figure out to get $\Theta(N log N)$ time. You do not need to use any nested loops for this problem, and in fact if you find yourself using them, you probably haven't found the right approach.
Distribution Count for Large Numbers (SortInts.java)
[Goodrich & Tamassia] Given a sequence of n distinct integers, each one of which is in the range $[0, n^2  1]$, develop an $O(n)$ algorithm for sorting them. See the skeleton file SortInts.java. You can't use ordinary distribution sort for this, because that would require initializing and traversing arrays of size $n^2$, which would take too long
Inversion Counting (Inversions.java)
Find an algorithm that runs in $O(n \lg n)$ time for computing the number of inversions in a list of n items. Array elements that are "out of order" can be corrected by swapping two adjacent elements at a time, each of which counts as a single inversion. See the skeleton file Inversions.java. To test that your code is actually $O(n \lg n)$, provide it a very large list (say hundreds of thousands).
Two Sum (Sum.java)
[Goodrich & Tamassia] Given two sequences of integers, $A$
and $B$, find an algorithm that runs in $O(n \lg n)$
time (where n is the total number of integers in A and B) that
determines, for a given parameter $m$, whether there is an
integer $a$ in $A$ and an integer $b$ in
$B$ such that $m = a + b$. See the skeleton file
Sum.java
. To test that your algorithm runs in $O(n \lg n)$
time, provide sequences of hundreds of thousands of integers. Feel
free to use any of the methods in java.util.Arrays.
D. LeftLeaning RedBlack Trees (LLRB)
In discussion, we examined 24 trees their relationship to RedBlack trees. If you need a reference or refresher, take a look at this page. Here, we will examine 23 trees and their corresponding LeftLeaning RedBlack trees.
23 trees are Btrees, just like 24 trees. However, they can have up to 2 elements and 3 children, whereas 24 trees could have one more of each. Naturally, we can come up with a RedBlack tree counterpart. However, since we can only have nodes with 1 or 2 elements, we can either have a single black node (for a oneelement 23 node) or a "section" with a black node and a red node (for a twoelement 23 node). As seen in the previous section, we can either let the red node be a left child or a right child. However, we choose to always let the red node be the left child of the black node. This leads to the name, "LeftLeaning" RedBlack tree.
The advantages of the LLRB tree over the usual RedBlack tree is the ease of implementation. Since there are less special cases for each "section" that represents a 23 node, the implementation is much simpler.
Normal binary search tree insertions and deletions can break the RedBlack tree invariants, so we need additional operations that can "restore" the RedBlack tree properties. In LLRB trees, there are two key operations that we use to restore the properties: rotations and color flips.
Rotations
Consider the following tree:
parent

7
/ \
1 c
/ \
a b
a
is a subtree with all elements less than 1, b
is a subtree with
elements between 1 and 7, and c
is a subtree with all elements
greater than 7. Now, let's take a look at another tree:
parent

1
/ \
a 7
/ \
b c
There are few key things to notice:
 The root of the tree has changed from 7 to 1.
a
,b
, andc
are still correctly placed. That is, their items do not violate the binary search tree invariants. The height of the tree can change by 1.
Here, we call this transition from the first tree to the second a "right rotation on 7".
Now, convince yourself that a "left rotation on 1" on the second tree will give us the first tree. The two operations are symmetric, and both maintain the binary search tree property!
Discussion: Rotation by Hand
We are given an extremely unbalanced binary search tree:
0
\
1
\
3
/ \
2 6
/ \
4 8
Write down a series of rotations (i.e. rotate right on 2) that will make tree balanced and have height of 2. HINT: Two rotations are sufficient.
Exercise: Rotation Implementation
Now we have seen that we can rotate the tree to balance it without
violating the binary search tree invariants. Now, we will implement it
ourselves! In RedBlackTree.java
, implement rotateRight
and
rotateLeft
. For your implementation, make the new root have the
color of the old root, and color the old root red. Why should we have
the colors change here and what might happen if we did not change the
colors?
Hint: The two operations are symmetric. Should the code significantly differ?
Color Flip
Now we consider the color flip operation that is essential to LLRB tree implementation. Given a node, this operation simply flips the color of itself, and the left and right children. However simple it may look now, we will examine its consequences later on.
For now, take a look at the implementation provided in RedBlackTree.java
.
Insertion
Finally, we are ready to put the puzzles together and see how insertion works on LLRB trees!
Say we are inserting x
.
 If the tree is empty, let
x
be the root with black color.  Otherwise do the normal binary search tree insertion, and color
x
red.  Restore LLRB properties.
Restoring LLRB Properties after Insertion.
First, let's assume that our new node x
is the only child of a black
node. That is:
parent (black)
/
x (red)
or
parent (black)
\
x (red)
Since we decided to make our tree left leaning, we know that the first
tree is the valid form and we will not have to do anything else. If we
end up with the second tree (x
> parent
) we can simply apply
rotateLeft
on parent
to get the first tree.
Now, let's consider the case when our new node x
becomes a child to
a black node which already has a left child, or a child to a red node.
LLRB have a onetoone mapping to 23 trees. This is like inserting
x
into a 23 tree node that already has 3 children!
Here, we have to deal with 3 different cases, and we will label them case A, B, C.
Case A: x
ends up as the right child of the black node.

5(black)
/ \
1(red) x(red)
For case A, the resulting section is the same as a 23 tree node with one extra element:

1 5 x
To fix it, we "split" the 23 node into two halves, "pushing" up the middle element to its parent:

5 (sibling)
  
1 x (nephews)
Analogously, for our LLRB section, we can apply flipColor
on 5
.
This results in:

5 (red)
/ \
1(black) x(black)
This exactly models the 23 node we desired. 5 is now a red node,
which means that it is now part of the "parent 23 node section". Now,
if 5 as a new red node becomes a problem, we can recursively deal
with it as we are dealing with x
now. Also, the root of the whole
tree should always be black, and it is perfectly fine for the root
to have two black children. It is simply a root 23 node with single
element and two children, each with single element.
Case B: x
ends up as the left child of the red node.

5 (black)
/
1 (red)
/
x (red)
In this case, we can apply rotateRight
on 5
, which will result in:

1 (black)
/ \
x(red) 5 (red)
This should look familiar, since it is exactly case A that we just examined before! After a rotation, our problem reduces to solving case A. Convince yourself that rotation performed here correctly handles the color changes and maintains the binary search tree properties.
Case C: x
ends up as the right child of the red node.

5 (black)
/
1 (red)
\
x (red)
In this case, we can apply rotateLeft
on 1
, which will result in:

5 (black)
/
x (red)
/
1 (red)
This also should look familiar, since it is exactly case B that we just examined. We just need one more rotation and color flip to restore LLRB properties.
Exercise:
Now, we will implement insert
in RedBlackTree.java
. We have
provided you with most of the logic structure, so all you need to do
is deal with normal binary search tree insertion and handle case A, B,
and C.
Discussion.
We have seen that even though the LLRB tree guarantees that the tree
will be almost balanced, LLRB insert operation requires many rotations
and color flips. Examine the procedure for the insertion and convince
yourself that the insert operation still takes
O(log(n))
as in balanced binary search trees.
Hint: How long is the path from root to the new leaf? For each node along the path, are additional operations limited to some constant number? What does that mean?
Deletion
Deletion deals with many more corner cases and is generally more difficult to implement. For time's sake, deletion is left out for this assignment.
E. Making a Balanced Tree
Exercise: Build a Balanced Tree from a Linked List
In BST.java
complete the linkedListToTree
method, which should
build a balanced binary search tree out of an already sorted
LinkedList
. Also, provide a good comment for the method
linkedListToTree
. In the BST constructor, we pass in
list.iterator()
to linkedListToTree
. What do we know about
repeated calls to iter.next()
given that the LinkedList
is already
sorted?
HINT: Recursion!
Question: If it's a BST, why can the items just be of Object
type in order to do the problem? Why not Comparable
?
Answer: Because you shouldn't need to ever do any comparisons
yourself. Just trust that the order in the LinkedList
is correct.
Selftest: linkedListToTree
Speed
Give the runtime of linkedListToTree
, where N is the length of the
linked list. The runtime is in (stroke over the areas after 
to
see if an answer is corect).
O(N)
 Correct! We can only call iter.next() N times, and since we call it at most once per recursive call, this must be the runtime of the algorithm.O(N^2)
 Incorrect. In each recursive call we call iter.next() exactly once (or return null). How many of these recursive calls can there be?O(log N)
 Incorrect. Even though we make a recursive call where we divide the problem in half, we make two of these recursive calls, so we don't reduce to log N time.(N*log N)
 Incorrect. In each recursive call we call iter.next() exactly once (or return null). How many of these recursive calls can there be?
F. Submission
You will be required to submit:
MySortingAlgorithms.java
with Selection Sort, Insertion Sort, Mergesort, and LSD Radix Sort implemented.sortingProblems.txt
.RedBlackTree.java
. At least one of
Intervals.java
,SortInts.java
,Inversions.java
, andSum.java
.  BST.java.