
CS61B Lecture #13: Packages, Access, Etc.

• Modularization facilities in Java.

• Importing

• Nested classes.

• Using overridden method.

• Parent constructors.

• Type testing.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 1

Package Mechanics

• Classes correspond to things being modeled (represented) in one’s
program.

• Packages are collections of “related” classes and other packages.

• Java puts standard libraries and packages in package java and javax.

• By default, a class resides in the anonymous package.

• To put it elsewhere, use a package declaration at start of file, as in

package database; or package ucb.util;

• Sun’s javac uses convention that class C in package P1.P2 goes in
subdirectory P1/P2 of any other directory in the class path .

• Unix example:

nova% export CLASSPATH=.:$HOME/java-utils:$MASTERDIR/lib/classes/junit.jar

nova% java junit.textui.TestRunner MyTests

Searches for TestRunner.class in ./junit/textui, ~/java-utils/junit/textui
and finally looks for junit/textui/TestRunner.class in the junit.jar
file (which is a single file that is a special compressed archive of an
entire directory of files).

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 2

Access Modifiers

• Access modifiers (private, public, protected) do not add anything
to the power of Java.

• Basically allow a programmer to declare what classes are supposed
to need to access (“know about”) what declarations.

• In Java, are also part of security—prevent programmers from ac-
cessing things that would “break” the runtime system.

• Accessibility always determined by static types.

– To determine correctness of writing x.f(), look at the definition
of f in the static type of x.

– Why? Because the rules are supposed to be enforced by the
compiler, which only knows static types of things (static types
don’t depend on what happens at execution time).

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 3

The Access Rules: Public

• Accessibility of a member depends on (1) how the member’s decla-
ration is qualified and (2) where it is being accessed.

• C1, C2, C3, and C4 are distinct classes.

• Class C2a is either class C2 itself or a subtype of C2.

package P1;

public class C1 ... {

// M is a method, field,...

public int M ...

void h(C1 x)

{ ... x.M ... } // OK.

}

package P1;

public class C4 ... {

void p(C1 x)

{ ... x.M ... } // OK.

}

package P2;

class C2 extends C3 {

void f(P1.C1 x) {... x.M ...} // OK

void g(C2a y) {... y.M ... } // OK

}

Public members are available everywhere.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 4

The Access Rules: Private

• C1, C2, and C4 are distinct classes.

• Class C2a is either class C2 itself or a subtype of C2.

package P1;

public class C1 ... {

// M is a method, field,...

private int M ...

void h(C1 x)

{ ... x.M ... } // OK.

}

package P1;

public class C4 ... {

void p(C1 x)

{ ... x.M ... } // ERROR.

}

package P2;

class C2 extends C1 {

void f(P1.C1 x) {... x.M ...} // ERROR

void g(C2a y) {... y.M ... } // ERROR

}

Private members are available only within the text
of the same class, even in subtypes.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 5

The Access Rules: Package Private

• C1, C2, and C4 are distinct classes.

• Class C2a is either class C2 itself or a subtype of C2.

package P1;

public class C1 ... {

// M is a method, field,...

int M ...

void h(C1 x)

{ ... x.M ... } // OK.

}

package P1;

public class C4 ... {

void p(C1 x)

{ ... x.M ... } // OK.

}

package P2;

class C2 extends C1 {

void f(P1.C1 x) {... x.M ...} // ERROR

void g(C2a y) {... y.M ... } // ERROR

}

Package Private members are available only within
the same package (even within subtypes).

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 6

The Access Rules: Protected

• C1, C2, and C4 are distinct classes.

• Class C2a is either class C2 itself or a subtype of C2.

package P1;

public class C1 ... {

// M is a method, field,...

protected int M ...

void h(C1 x)

{ ... x.M ... } // OK.

}

package P1;

public class C4 ... {

void p(C1 x)

{ ... x.M ... } // OK.

}

package P2;

class C2 extends C1 {

void f(P1.C1 x) {... x.M ...} // ERROR

void g(C2a y) {... y.M ... } // OK

void g2() {... M ... } // OK (this.M)

}

Protected members of C1 are available within P1
and within subtypes of C1 such as C2, but only if
accessed from objects that have subtypes of C2.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 7

What May be Controlled

• Classes and interfaces that are not nested may be public or package
private (we haven’t talked explicitly about nested types yet).

• Members—fields, methods, constructors, and (later) nested types—
may have any of the four access levels.

• May override a method only with one that has at least as permissive
an access level. Reason: avoid inconsistency:

package P1;

public class C1 {

public int f() { ... }

}

public class C2 extends C1 {

// Actually a compiler error; pretend

// it’s not and see what happens

int f() { ... }

}

package P2;

class C3 {

void g(C2 y2) {

C1 y1 = y2

y2.f(); // Bad???

y1.f(); // OK??!!?

}

}

That is, there’s no point in restricting C2.f, because access control
depends on static types, and C1.f is public.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 8

Intentions of this Design

• public declarations represent specifications—what clients of a pack-
age are supposed to rely on.

• package private declarations are part of the implementation of a
class that must be known to other classes that assist in the imple-
mentation.

• protected declarations are part of the implementation that sub-
types may need, but that clients of the subtypes generally won’t.

• private declarations are part of the implementation of a class that
only that class needs.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 9

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK?

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g(SomePack.A1 x) {

x.f1(); // OK?

x.y1 = 3; // OK?

}

}

class B2 extends SomePack.A1 {

void h(SomePack.A1 x) {

x.f1(); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 10

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g(SomePack.A1 x) {

x.f1(); // OK?

x.y1 = 3; // OK?

}

}

class B2 extends SomePack.A1 {

void h(SomePack.A1 x) {

x.f1(); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 11

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // OK?

}

}

class B2 extends SomePack.A1 {

void h(SomePack.A1 x) {

x.f1(); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 12

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends SomePack.A1 {

void h(SomePack.A1 x) {

x.f1(); // OK?

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 13

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends SomePack.A1 {

void h(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // OK?

f1(); // OK?

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 14

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends SomePack.A1 {

void h(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // OK?

f1(); // ERROR

y1 = 3; // OK?

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 15

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends SomePack.A1 {

void h(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // OK?

f1(); // ERROR

y1 = 3; // OK

x1 = 3; // OK?

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 16

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends SomePack.A1 {

void h(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // OK?

f1(); // ERROR

y1 = 3; // OK

x1 = 3; // ERROR

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 17

Quick Quiz

package SomePack;

public class A1 {

int f1() {

A1 a = ...

a.x1 = 3; // OK

}

protected int y1;

private int x1;

}

// Anonymous package

class A2 {

void g(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // ERROR

}

}

class B2 extends SomePack.A1 {

void h(SomePack.A1 x) {

x.f1(); // ERROR

x.y1 = 3; // ERROR

f1(); // ERROR

y1 = 3; // OK

x1 = 3; // ERROR

}

}

• Note: Last three lines of h have implicit this.’s in front. Static type
of this is B2.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 18

Access Control Static Only

“Public” and “private” don’t apply to dynamic types; it is possible to call
methods in objects of types you can’t name:

package utils; | package mystuff;

/** A Set of things. */ |

public interface Collector { | class User {

void add(Object x); | utils.Collector c =

} | utils.Utils.concat();

---------------------------- |

package utils; | c.add("foo"); // OK

public class Utils { | ... c.value(); // ERROR

public static Collector concat() { | ((utils.Concatenator) c).value()

return new Concatenator(); | // ERROR

} |

} ----------------------------------

/** NON-PUBLIC class that collects strings. */

class Concatenater implements Collector {

StringBuffer stuff = new StringBuffer();

int n = 0;

public void add(Object x) { stuff.append(x); n += 1; }

public Object value() { return stuff.toString(); }

}
Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 19

Loose End #1: Importing

• Writing java.util.List every time you mean List or
java.lang.regex.Pattern every time you mean Pattern is annoying.

• The purpose of the import clause at the beginning of a source file is
to define abbreviations:

– import java.util.List;means “within this file, you can use List
as an abbreviation for java.util.List.

– import java.util.*; means “within this file, you can use any
class name in the package java.util without mentioning the pack-
age.”

• Importing does not grant any special access; it only allows abbrevi-
ation.

• In effect, your program always contains import java.lang.*;

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 20

Loose End #2: Static importing

• One can easily get tired of writing System.out and Math.sqrt. Do
you really need to be reminded with each use that out is in the
java.lang.System package and that sqrt is in the Math package
(duh)?

• Both examples are of static members. New feature of Java allows
you to abbreviate such references:

– import static java.lang.System.out; means “within this file,
you can use out as an abbreviation for System.out.

– import static java.lang.System.*;means “within this file, you
can use any static member name in System without mentioning the
package.

• Again, this is only an abbreviation. No special access.

• Alas, you can’t do this for classes in the anonymous package.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 21

Loose End #3: Parent constructors

• In lecture notes #5, talked about how Java allows implementer of a
class to control all manipulation of objects of that class.

• In particular, this means that Java gives the constructor of a class
the first shot at each new object.

• When one class extends another, there are two constructors—one
for the parent type and one for the new (child) type.

• In this case, Java guarantees that one of the parent’s constructors
is called first. In effect, there is a call to a parent constructor at
the beginning of every one of the child’s constructors.

• You can call the parent’s constructor yourself. By default, Java calls
the “default” (parameterless) constructor.

class Figure { class Rectangle extends Figure {

public Figure(int sides) { public Rectangle() {

... super(4);

}... }...

} }

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 22

Loose End #4: Using an Overridden Method

• Suppose that you wish to add to the action defined by a superclass’s
method, rather than to completely override it.

• The overriding method can refer to overridden methods by using
the special prefix super.

• For example, you have a class with expensive functions, and you’d
like a memoizing version of the class.

class ComputeHard {

int cogitate(String x, int y) { ... }

}

class ComputeLazily extends ComputeHard {

int cogitate(String x, int y) {

if (don’t already have answer for this x and y) {

int result = super.cogitate(x, y); // <<< Calls overridden function

memoize (save) result;
return result;

}

return memoized result;
}

}

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 23

Loose End #5: Nesting Classes

• Sometimes, it makes sense to nest one class in another. The nested
class might

– be used only in the implementation of the other, or

– be conceptually “subservient” to the other

• Nesting such classes can help avoid name clashes or “pollution of the
name space” with names that will never be used anywhere else.

• Example: Polynomials can be thought of as sequences of terms.
Terms aren’t meaningful outside of Polynomials, so you might define
a class to represent a term inside the Polynomial class:

class Polynomial {

methods on polynomials

private Term[] terms;

private static class Term {

...

}

}

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 24

Inner Classes

• Last slide showed a static nested class. Static nested classes are
just like any other, except that they can be private or protected,
and they can see private variables of the enclosing class.

• Non-static nested classes are called inner classes.

• Somewhat rare (and syntax is odd); used when each instance of the
nested class is created by and naturally associated with an instance
of the containing class, like Banks and Accounts:

Bank
account

account
Bank

account

account

class Bank { | Bank e = new Bank(...);

private void connectTo(...) {...} | Bank.Account p0 =

public class Account { | e.new Account(...);

public void call(int number) { | Bank.Account p1 =

Bank.this.connectTo(...); ... | e.new Account(...);

} // Bank.this means "the bank that |

} // created me" |

} |

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 25

Trick: Delegation and Wrappers

• Not always appropriate to use inheritance to extend something.

• Homework gives example of a TrReader, which contains another
Reader, to which it delegates the task of actually going out and
reading characters.

• Another example: a class that instruments objects:

interface Storage {

void put(Object x);

Object get();

}

class Monitor implements Storage {

int gets, puts;

private Storage store;

Monitor(Storage x) { store = x; gets = puts = 0; }

public void put(Object x) { puts += 1; store.put(x); }

public Object get() { gets += 1; return store.get(); }

}

// ORIGINAL

Storage S = something;
f(S);

// INSTRUMENTED

Monitor S = new Monitor(something);
f(S);

System.out.println(S.gets + " gets");

Monitor is called a wrapper class.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 26

Loose End #6: instanceof

• It is possible to ask about the dynamic type of something:

void typeChecker(Reader r) {

if (r instanceof TrReader)

System.out.print("Translated characters: ");

else

System.out.print("Characters: ");

...

}

• However, this is seldom what you want to do. Why do this:

if (x instanceof StringReader)

read from (StringReader) x;

else if (x instanceof FileReader)

read from (FileReader) x;

...

when you can just call x.read()?!

• In general, use instance methods rather than instanceof.

Last modified: Fri Sep 21 14:32:01 2018 CS61B: Lecture #12 27

	CS61B Lecture #13: Packages, Access, Etc.
	Package Mechanics
	Access Modifiers
	The Access Rules: Public
	The Access Rules: Private
	The Access Rules: Package Private
	The Access Rules: Protected
	What May be Controlled
	Intentions of this Design
	Quick Quiz
	Access Control Static Only
	Loose End #1: Importing
	Loose End #2: Static importing
	Loose End #3: Parent constructors
	Loose End #4: Using an Overridden Method
	Loose End #5: Nesting Classes
	Inner Classes
	Trick: Delegation and Wrappers
	Loose End #6: instanceof

