
CS61B Lecture #22

Today: Backtracking searches, game trees (DSIJ, Section 6.5)

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 1

Searching by “Generate and Test”

• We’ve been considering the problem of searching a set of data stored
in some kind of data structure: “Is x ∈ S?”

• But suppose we don’t have a set S, but know how to recognize what
we’re after if we find it: “Is there an x such that P (x)?”

• If we know how to enumerate all possible candidates, can use ap-
proach of Generate and Test: test all possibilities in turn.

• Can sometimes be more clever: avoid trying things that won’t work,
for example.

• What happens if the set of possible candidates is infinite?

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 2

Backtracking Search

• Backtracking search is one way to enumerate all possibilities.

• Example: Knight’s Tour. Find all paths a knight can travel on a chess-
board such that it touches every square exactly once and ends up
one knight move from where it started.

• In the example below, the numbers indicate position numbers (knight
starts at 0).

• Here, knight (N) is stuck; how to handle this?

6

5

4 7

10 2

8 3 0

N 9 1

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 3

General Recursive Algorithm

/** Append to PATH a sequence of knight moves starting at ROW, COL

* that avoids all squares that have been hit already and

* that ends up one square away from ENDROW, ENDCOL. B[i][j] is

* true iff row i and column j have been hit on PATH so far.

* Returns true if it succeeds, else false (with no change to PATH).

* Call initially with PATH containing the starting square, and

* the starting square (only) marked in B. */

boolean findPath(boolean[][] b, int row, int col,

int endRow, int endCol, List path) {

if (path.size() == 64) return isKnightMove(row, col, endRow, endCol);

for (r, c = all possible moves from (row, col)) {

if (!b[r][c]) {

b[r][c] = true; // Mark the square

path.add(new Move(r, c));

if (findPath(b, r, c, endRow, endCol, path)) return true;

b[r][c] = false; // Backtrack out of the move.

path.remove(path.size()-1);

}

}

return false;

}

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 4

Another Kind of Search: Best Move

• Consider the problem of finding the best move in a two-person game.

• One way: assign a heuristic value to each possible move and pick
highest (aka static evaluation). Examples:

– number of black pieces − number of white pieces in checkers.

– weighted sum of white piece values − weighted sum of black
pieces in chess (Queen=9, Rook=5, etc.)

– Nearness of pieces to strategic areas (center of board).

• But this is misleading. A move might give us more pieces, but set up
a devastating response from the opponent.

• So, for each move, look at opponent’s possible moves, assume he
picks the best one for him, and use that as the value.

• But what if you have a great response to his response?

• How do we organize this sensibly?

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 5

Game Trees

• Think of the space of possible continuations of the game as a tree.

• Each node is a position, each edge a move.

-30 -5 5 15 -20 -30 9 10

My move
(maximizing)

Opponent’s move
(minimizing)

My move

Opponent’s move

• Suppose numbers at the bottom are the values of those final posi-
tions to me. Smaller numbers are of more value to my opponent.

• What should I move? What value can I get if my opponent plays as
well as possible?

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 6

Game Trees, Minimax

• Think of the space of possible continuations of the game as a tree.

• Each node is a position, each edge a move.

-5

-5 -20

-5 15 -20 10

-30 -5 5 15 -20 -30 9 10

*

*

* * * *

*

My move

Opponent’s move

My move

Opponent’s move

• Numbers are the values we guess for the positions (larger means
better for me). Starred nodes would be chosen.

• I always choose child (next position) with maximum value; opponent
chooses minimum value (“Minimax algorithm”)

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 7

Alpha-Beta Pruning

• We can prune this tree as we search it.

-5

-5 ≤-20

-5 ≥ 5
-20

-30 -5 5
-20 -30

*

*

*
*

*

My move

Opponent’s move

My move

Opponent’s move

• At the ‘≥ 5’ position, I know that the opponent will not choose to
move here (since he already has a −5 move).

• At the ‘≤ −20’ position, my opponent knows that I will never choose
to move here (since I already have a −5 move).

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 8

Cutting off the Search

• If you could traverse game tree to the bottom, you’d be able to
force a win (if it’s possible).

• Sometimes possible near the end of a game.

• Unfortunately, game trees tend to be either infinite or impossibly
large.

• So, we choose a maximum depth, and use a heuristic value computed
on the position alone (called a static valuation) as the value at that
depth.

• Or we might use iterative deepening , repeating the search at in-
creasing depths until time is up.

• Much more sophisticated searches are possible, however (take CS188).

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 9

Overall Search Algorithm

• Depending on whose move it is (maximizing player or minimizing player),
we’ll search for a move estimated to be optimal in one direction or
the other.

• Search will be exhaustive down to a particular depth in the game
tree; below that, we guess values.

• Also pass α and β limits:

– High player does not care about exploring a position further once
he knows its value is larger than what the minimizing player knows
he can get (β), because the minimizing player will never allow that
position to come about.

– Likewise, minimizing player won’t explore a positions whose value
is less than what the maximizing player knows he can get (α).

• To start, a maximizing player will find a move with

findMax(current position, search depth −∞, +∞)

• minimizing player:

findMin(current position, search depth −∞, +∞)

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 10

Some Pseudocode for Searching (One Level)

• The most basic kind of game-tree search is to assign some heuristic
value to any given position, looking at just the next possible move:

Move simpleFindMax(Position posn, double alpha, double beta) {
if (posn.maxPlayerWon())

return artificial “Move” with value +∞;

else if (posn.minPlayerWon())

return artificial “Move” with value −∞;

Move bestSoFar = artificial “Move” with value −∞;

for (each M = a legal move for maximizing player from posn) {
Position next = posn.makeMove(M);

next.setValue(heuristicEstimate(next));

if (next.value() >= bestSoFar.value()) {
bestSoFar = next;

alpha = max(alpha, next.value());

if (beta <= alpha) break;

}
}
return bestSoFar;

}

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 11

One-Level Search for Minimizing Player

Move simpleFindMin(Position posn, double alpha, double beta) {
if (posn.maxPlayerWon())

return artificial “Move” with value +∞;

else if (posn.minPlayerWon())

return artificial “Move” with value −∞;

Move bestSoFar = artificial “Move” with value +∞;

for (each M = a legal move for minimizing player from posn) {
Position next = posn.makeMove(M);

next.setValue(heuristicEstimate(next));

if (next.value() <= bestSoFar.value()) {
bestSoFar = next;

beta = min(beta, next.value());

if (beta <= alpha) break;

}
}
return bestSoFar;

}

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 12

Some Pseudocode for Searching (Maximizing Player)

/** Return a best move for maximizing player from POSN, searching

* to depth DEPTH. Any move with value >= BETA is also

* "good enough". */

Move findMax(Position posn, int depth, double alpha, double beta) {
if (depth == 0 || gameOver(posn))

return simpleFindMax(posn, alpha, beta);

Move bestSoFar = artificial “Move” with value −∞;

for (each M = a legal move for maximizing player from posn) {
Position next = posn.makeMove(M);

Move response = findMin(next, depth-1, alpha, beta);

if (response.value() >= bestSoFar.value()) {
bestSoFar = next;

next.setValue(response.value());

alpha = max(alpha, response.value());

if (beta <= alpha) break;

}
}
return bestSoFar;

}

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 13

Some Pseudocode for Searching (Minimizing Player)

/** Return a best move for minimizing player from POSN, searching

* to depth DEPTH. Any move with value <= ALPHA is also

* "good enough". */

Move findMin(Position posn, int depth, double alpha, double beta) {
if (depth == 0 || gameOver(posn))

return simpleFindMin(posn, alpha, beta);

Move bestSoFar = artificial “Move” with value +∞;

for (each M = a legal move for minimizing player from posn) {
Position next = posn.makeMove(M);

Move response = findMax(next, depth-1, alpha, beta);

if (response.value() <= bestSoFar.value()) {
bestSoFar = next;

next.setValue(response.value());

beta = min(beta, response.value());

if (beta <= alpha) break;

}
}
return bestSoFar;

}

Last modified: Thu Oct 11 15:10:22 2018 CS61B: Lecture #22 14

	CS61B Lecture #22
	Searching by ``Generate and Test''
	Backtracking Search
	General Recursive Algorithm
	Another Kind of Search: Best Move
	Game Trees
	Game Trees, Minimax
	Alpha-Beta Pruning
	Cutting off the Search
	Overall Search Algorithm
	Some Pseudocode for Searching (One Level)
	One-Level Search for Minimizing Player
	Some Pseudocode for Searching (Maximizing Player)
	Some Pseudocode for Searching (Minimizing Player)

