CS61B Lecture #31

Today:

• More balanced search structures (*DS*(IJ), Chapter 9

Coming Up:

• Pseudo-random Numbers (*DS*(IJ), Chapter 11)
Really Efficient Use of Keys: the Trie

- Haven’t said much about cost of comparisons.
- For strings, worst case is length of string.
- Therefore should throw extra factor of key length, L, into costs:
 - $\Theta(M)$ comparisons really means $\Theta(ML)$ operations.
 - So to look for key X, keep looking at same chars of X M times.
- Can we do better? Can we get search cost to be $O(L)$?

Idea: Make a multi-way decision tree, with one decision per character of key.
The Trie: Example

- Set of keys
 \{a, abase, abash, abate, abbas, axolotl, axe, fabric, facet\}
- Ticked lines show paths followed for “abash” and “fabric”
- Each internal node corresponds to a possible prefix.
- Characters in path to node = that prefix.
Adding Item to a Trie

• Result of adding bat and faceplate.
• New edges ticked.
A Side-Trip: Scrunching

- For speed, obvious implementation for internal nodes is array indexed by character.
- *Gives* $O(L)$ performance, L length of search key.
- [Looks as if independent of N, number of keys. Is there a dependence?]
- **Problem:** arrays are *sparsely populated* by non-null values—waste of space.

Idea: Put the arrays on top of each other!

- Use null (0, empty) entries of one array to hold non-null elements of another.
- Use extra markers to tell which entries belong to which array.
Scrunching Example

Small example: (unrelated to Tries on preceding slides)

- Three leaf arrays, each indexed 0..9

A1:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>bass</td>
<td>trout</td>
<td>pike</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A2:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>ghee</td>
<td>milk</td>
<td>oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A3:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>salt</td>
<td>cumin</td>
<td>mace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Now overlay them, but keep track of original index of each item:

A1:

<table>
<thead>
<tr>
<th>0*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5*</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>bass</td>
<td>trout</td>
<td>pike</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A2:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2*</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6*</th>
<th>7*</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>ghee</td>
<td>milk</td>
<td>oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A3:

<table>
<thead>
<tr>
<th>0</th>
<th>1*</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6*</th>
<th>7</th>
<th>8</th>
<th>9*</th>
</tr>
</thead>
<tbody>
<tr>
<td>salt</td>
<td>cumin</td>
<td>mace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A123:

<table>
<thead>
<tr>
<th>0</th>
<th>-1</th>
<th>1</th>
<th>-1</th>
<th>2</th>
<th>5</th>
<th>5</th>
<th>7</th>
<th>6</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>bass</td>
<td>ghee</td>
<td>trout</td>
<td>pike</td>
<td>milk</td>
<td>oil</td>
<td>mace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Practicum

• The scrunching idea is cute, but
 - Not so good if we want to expand our trie.
 - A bit complicated.
 - Actually more useful for representing large, sparse, fixed tables with many rows and columns.

• Furthermore, number of children in trie tends to drop drastically when one gets a few levels down from the root.

• So in practice, might as well use linked lists to represent set of node’s children...

• ...but use arrays for the first few levels, which are likely to have more children.
Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large segments.

• Typical example:

 \[
 \begin{array}{cccccccccccccccc}
 & & & & & & & & & & & & & & & \\
 \infty & 10 & 20 & 25 & 30 & 40 & 50 & 55 & 60 & 90 & 95 & 100 & 115 & 120 & 125 & \infty \\
 \end{array}
 \]

• To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are \(> k \) high as there are that are \(k \) high.

• Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A *skip list* can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 ![Diagram of a skip list](image.png)

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

 - Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $> k$ high as there are that are k high.

 - Makes searches fast *with high probability.*
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about \(\frac{1}{2} \) as many nodes that are \(> k \) high as there are that are \(k \) high.

- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- **A skip list** can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

![Skip List Diagram]

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $> k$ high as there are that are k high.

- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A *skip list* can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

```
−∞  0  1  2  3  10  20  25  30  40  50  55  60  90  95  100  115  120  125  130  140  150  ∞
```

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $> k$ high as there are that are k high.

- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large segments.

• Typical example:

```
−∞  0  1  2  3  10  20  25  30  40  50  55  60  90  95  100  115  120  125  130  140  150  ∞
```

```
①——②——③——④——⑤——⑥——⑦——⑧——⑨——⑩
```

• To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are \(k \) high as there are that are \(k \) high.

• Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
 - Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $> k$ high as there are that are k high.
 - Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

 - To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

 - In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

 - Heights of the nodes were chosen randomly so that there are about \(\frac{1}{2}\) as many nodes that are \(k\) high as there are that are \(k\) high.

 - Makes searches fast \textit{with high probability}.
Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about $1/2$ as many nodes that are $> k$ high as there are that are k high.

- Makes searches fast with high probability.
Probabilistic Balancing: Skip Lists

- A *skip list* can be thought of as a kind of n-ary search tree in which we choose to put the keys at “random” heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

![Skip List Diagram]

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are \(k \) high as there are that are \(k \) high.
- Makes searches fast *with high probability.*
Probabilistic Balancing: Skip Lists

- A **skip list** can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.

- More often thought of as an ordered list in which one can skip large segments.

- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.

- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.

- Heights of the nodes were chosen randomly so that there are about 1/2 as many nodes that are $> k$ high as there are that are k high.

- Makes searches fast *with high probability.*
Example: Adding and deleting

• Starting from initial list:

0 −∞ 1 2 3 10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

• In any order, we add 126 and 127 (choosing random heights for them), and remove 20 and 40:

0 −∞ 10 25 30 50 55 60 90 95 100 115 120 125 126 127 130 140 150 ∞

• Shaded nodes here have been modified.
Summary

• Balance in search trees allows us to realize $\Theta(\lg N)$ performance.

• B-trees, red-black trees:
 - Give $\Theta(\lg N)$ performance for searches, insertions, deletions.
 - B-trees good for external storage. Large nodes minimize # of I/O operations

• Tries:
 - Give $\Theta(B)$ performance for searches, insertions, and deletions, where B is length of key being processed.
 - But hard to manage space efficiently.

• Interesting idea: scrunched arrays share space.

• Skip lists:
 - Give probable $\Theta(\lg N)$ performance for searches, insertions, deletions
 - Easy to implement.
 - Presented for interesting ideas: probabilistic balance, randomized data structures.
Summary of Collection Abstractions

- Multiset
 - contains, iterator

- List
 - get(n)

- Set

- Ordered Set
 - first
 - subset

- Priority Queue
 - Green: Java has no corresponding interface

- Unordered Set
 - Blue: Java has corresponding interface

- Map
 - contains, iterator
 - get

- Unordered Map

- Ordered Map
Data Structures that Implement Abstractions

Multiset

- **List**: arrays, linked lists, circular buffers
- **Set**
 - **OrderedSet**
 - *Priority Queue*: heaps
 - *Sorted Set*: binary search trees, red-black trees, B-trees, sorted arrays or linked lists
 - **Unordered Set**: hash table

Map

- **Unordered Map**: hash table
- **Ordered Map**: red-black trees, B-trees, sorted arrays or linked lists
Corresponding Classes in Java

Multiset (Collection)
- **List**: ArrayList, LinkedList, Stack, ArrayBlockingQueue, ArrayDeque
- **Set**
 - OrderedSet
 * Priority Queue: PriorityQueue
 * Sorted Set (SortedSet): TreeSet
 - Unordered Set: HashSet

Map
- Unordered Map: HashMap
- Ordered Map (SortedMap): TreeMap