Recreation
Prove that [(2++/3)"| is odd for all integer n > 0.

[Source: D. O. Shklarsky, N. N. Chentzov, I. M. Yaglom, The USSR Olympiad Problem
Book, Dover ed. (1993), from the W. H. Freeman edition, 1962.]

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 1

CS61B Lecture #4: Values and Containers

e I will post classroom announcements from outside groups to Piazza
in the future in the ‘outside postings’ folder.

e Labs are normally due at midnight Friday.
e Project O now released.

e Today. Simple classes. Scheme-like lists. Destructive vs. non-
destructive operations. Models of memory.

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 2

Values and Containers

e Values are numbers, booleans, and pointers. Values never change.

3 'a’ true JT— \ J—'

e Simple containers contain values:

X3 L:B P 1

Examples: variables, fields, individual array elements, parameters.

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 3

Structured Containers

Structured containers contain (O or more) other containers:

Class Object Array Object Empty Object

Wt o 1 2
2|1

3 \ 4211719 [l
0|42

Alternative | h{3
Notation ’r:\ 117

2(9

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 4

Pointers

e Pointers (or references) are values that reference (point to) con-
tainers.

e One particular pointer, called null, points to nothing.

e In Java, structured containers contain only simple containers, but
pointers allow us to build arbitrarily big or complex structures any-
way.

0 1
1/ 1\

o/ 0
319 17

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 5

Containers in Java

e Containers may be named or anonymous.

e In Java, all simple containers are named, all structured contain-
ers are anonymous, and pointers point only to structured containers.
(Therefore, structured containers contain only simple containers).

named simple containers (fields)
within structured containers

hA h
3 —_

p: - {7
simple container structured containers
(local variable) (anonymous)

e In Java, assignment copies values into simple containers.
e Exactly like Scheme and Pythonl!

e (Python also has slice assignment, as in x[3:7]=. . ., which is short-
hand for something else entirely.)

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 6

Defining New Types of Object

e Class declarations introduce new types of objects.
e Example: list of integers:

public class IntList {
// Constructor function (used to initialize new object)
/** List cell containing (HEAD, TAIL). x*/
public IntList(int head, IntList tail) {
this.head = head; this.tail = tail;

}

// Names of simple containers (fields)

// WARNING: public instance variables usually bad style!
public int head;

public IntList tail,

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 7

Primitive Operations

IntList Q, L;

L = new IntList(3, null); L:

N =1L; Q=

Q = new IntList(42, null); L:

L.tail = Q; Q: ,/'

L.tail.head += 1; L:

3 ->43|::\

// Now Q.head == 43
Q: //

// and L.tail.head == 43

Last modified: Wed Aug 29 01:39:50 2018

CS61B: Lecture #4 8

Side Excursion: Another Way to View Pointers

e Some folks find the idea of "copying an arrow" somewhat odd.
e Alternative view: think of a pointer as a label, like a street address.

e Each object has a permanent label on it, like the address plaque on
a house.

e Then a variable containing a pointer is like a scrap of paper with a
street address written on it.

e One view:

last:| —

result:| -T—> 5 ——>45|\|

e Alternative view:

last: | #7

result: | #7

#3 i4|5|\|

N

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 9

Another Way to View Pointers (IT)

e Assigning a pointer to a variable looks just like assigning an integer
to a variable.

e So, after executing “last = last.tail;" we have

last:

result:| T— 5 ——>45|\|

e Alternative view:

last: | #3

: 5 | #3 45
result: | #7 1 = I\

e Under alternative view, you might be less inclined to think that as-
signment would change object #7 itself, rather than just “last”.

e BEWARE! Internally, pointers really are just numbers, but Java
treats them as more than that: they have types, and you can't just
change integers into pointers.

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 10

Destructive vs. Non-destructive

Problem: Given a (pointer to a) list of integers, L, and an integer in-
crement n, return a list created by incrementing all elements of the list
by n.

/** List of all items in P incremented by n. Does not modify
* existing IntLists. */
static IntList incrList(IntList P, int n) {
return /*(P, with each element incremented by n)*/
}

We say incrList is non-destructive, because it leaves the input objects
unchanged, as shown on the left. A destructive method may modify the
input objects, so that the original data is no longer available, as shown
on the right:

After Q = incrList(L, 2): After Q = dincrList(L, 2) (destructive):
L:| =43 ——>43\ L: —7 5 ——>45\|
Q[=5 -——*>45\\\ Q:| 7

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 11

Nondestructive IncrList: Recursive

/** List of all items in P incremented by n. */
static IntList incrList(IntList P, int n) {
if (P == null)
return null;
else return new IntlList(P.head+n, incrList(P.tail, n));

}

e Why does incrList have to return its result, rather than just set-
ting P?

e Inthe call incrList (P, 2),whereP contains 3 and 43, which IntList
object gets created first?

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 12

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null) <K<
return null;
IntList result, last;

result = last P.| 44— 3| +—43| +—

561\

= new IntList(P.head+n, null);
while (P.tail !'= null) {
P = P.tail;
last.tail
= new IntList(P.head+n, null);
last = last.tail;

}

return result;

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 13

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)
return null;
IntList result, last;

561\

result = last <KL p:| —
= new IntList(P.head+n, null);

while (P.tail !'= null) { last:| <
P = P.tail;
last.tail result:| —

= new IntList(P.head+n, null);
last = last.tail;

}

return result;

Last modified: Wed Aug 29 01:39:50 2018

CS61B: Lecture #4 14

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)
return null;
IntList result, last;

561\

result = last P:| ~ 3| +—43| +—

= new IntList(P.head+n, null);
while (P.tail !'= null) { last:| <

P = P.tail; <<LL \
last.tail result: __>EE

= new IntList(P.head+n, null);
last = last.tail;

}

return result;

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 15

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)
return null;
IntList result, last;

561\

result = last P:| ~ 3| +—43| +—
= new IntList(P.head+n, null);

while (P.tail !'= null) { last:| <
P = P.tail;
last.tail <K< r'esul'r: —4— 5 ——>4__5N

= new IntList(P.head+n, null);
last = last.tail;

}

return result;

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 16

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)
return null;
IntList result, last;

result = last P:| ~ 3| +—43| +—

561\

= new IntList(P.head+n, null);

while (P.tail !'= null) { last:| —
P = Ptall, _\
last.tail result:| T—>5 ——>45‘ >|

= new IntList(P.head+n, null);
last = last.tail; <<<

}

return result;

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 17

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)
return null;
IntList result, last;

result = last P:| ~ 3| +—43| +—

561\

= new IntList(P.head+n, null);

while (P.tail !'= null) { last:| —
P = P.tail; << \
last.tail result:| T—>5 ——>45‘ >|

= new IntList(P.head+n, null);
last = last.tail;

}

return result;

Last modified: Wed Aug 29 01:39:50 2018 CS61B: Lecture #4 18

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {

if (P == null)

return null;
IntList result, last;
result = last

= new IntList(P.head+n, null);
while (P.tail !'= null) {

P = P.tail;

last.tail <KL

= new IntList(P.head+n, null);
last = last.tail;

}

return result;

Last modified: Wed Aug 29 01:39:50 2018

P:
last:

result:

561\

58]\

CS61B: Lecture #4 19

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)
return null;
IntList result, last;

561\

result = last P:| ~
= new IntList(P.head+n, null);

while (P.tail !'= null) { last:
P = P.tail;
last.tail result:| —

58]\

= new IntList(P.head+n, null);
last = last.tail; <<<

}

return result;

Last modified: Wed Aug 29 01:39:50 2018

CS61B: Lecture #4 20

	Recreation
	CS61B Lecture #4: Values and Containers
	Values and Containers
	Structured Containers
	Pointers
	Containers in Java
	Defining New Types of Object
	Primitive Operations
	Side Excursion: Another Way to View Pointers
	Another Way to View Pointers (II)
	Destructive vs. Non-destructive
	Nondestructive IncrList: Recursive
	An Iterative Version

