
CS 61B Discussion 10 Solution Fall 2019
1 Sorting I
Show the steps taken by each sort on the following unordered list:

106, 351, 214, 873, 615, 172, 333, 564

(a) Quicksort. After each partition during the algorithm, write the ordering of the list, circle the
pivot that was used for that partition, and box the sub-array being partitioned. Assume that
the pivot is always the first item in the sublist being sorted and that the array is sorted in
place.

In the solution, we will bold the next pivot(s) to be used and
�� ��circle the current unsorted

elements of the list.�� ��106 351 214 873 615 172 333 564

106
�� ��351 214 873 615 172 333 564

106
�� ��214 172 333 351

�� ��873 615 564

106 172 214 333 351
�� ��615 564 873

106 172 214 333 351 564 615 873

Note that depending on how the partition method is implemented, you may have different
orderings of elements on either side of your pivot after a partition. The only property that
must hold is that all elements less than your pivot go to the left, and all elements greater go
to the right.

(b) Merge sort. Show the intermediate merging steps.
106 351 214 873 615 172 333 564

106 351 214 873 172 615 333 564

106 214 351 873 172 333 564 615

106 172 214 333 351 564 615 873

(c) LSD radix sort. Show the ordering of the list after each round of counting sort.
106 351 214 873 615 172 333 564

351 172 873 333 214 564 615 106

106 214 615 333 351 564 172 873

106 172 214 333 351 564 615 873

CS 61B, Fall 2019, Discussion 10 Solution 1



2 Sorting II
Match the sorting algorithms to the sequences, each of which represents several intermediate steps
in the sorting of an array of integers. Assume that for quicksort, the pivot is always the first item
in the sublist being sorted.
Algorithms: Quicksort, merge sort, heapsort, MSD radix sort, insertion sort.

(a) 12, 7, 8, 4, 10, 2, 5, 34, 14
7, 8, 4, 10, 2, 5, 12, 34, 14
4, 2, 5, 7, 8, 10, 12, 14, 34

Quicksort, using the first element as a pivot.

(b) 23, 45, 12, 4, 65, 34, 20, 43
4, 12, 23, 45, 65, 34, 20, 43

Insertion sort. The first four elements are sorted.

Another solution is merge sort (with a recursive implementation), where the left half has
already been fully merge-sorted.

(c) 12, 32, 14, 11, 17, 38, 23, 34
12, 14, 11, 17, 23, 32, 38, 34

MSD radix sort. We have sorted by the first digit so far.

(d) 45, 23, 5, 65, 34, 3, 76, 25
23, 45, 5, 65, 3, 34, 25, 76
5, 23, 45, 65, 3, 25, 34, 76

Merge sort. We have finished 2 levels of merging stages.

(e) 23, 44, 12, 11, 54, 33, 1, 41
54, 44, 33, 41, 23, 12, 1, 11
44, 41, 33, 11, 23, 12, 1, 54

Heap sort. The second line creates a max-heap.

3 Runtimes
Fill in the best and worst case runtimes of the following sorting algorithms with respect to n, the
length of the list being sorted. For radix sort, assume we are sorting integers and k is the average
number of digits in the strings being sorted. If the runtimes are different for MSD and LSD, specify
for both algorithms.

Insertion sort Quicksort Merge sort Heapsort Radix sort
Worst case n2 n2 n logn n logn nk
Best case n n logn n logn n nk

CS 61B, Fall 2019, Discussion 10 Solution 2



(a) Insertion sort.
Worst case: Θ(n2) - If we use a linked list, it takes Θ(1) time to sort the first item, a worst
case of Θ(2) to sort the second item if we have to compare with every sorted item, and so on
until it takes a worst case of Θ(n−1) to sort the last item. This gives us Θ(1)+Θ(2)+ ...+

Θ(n−1) = Θ(n(n−1)
2 ) = Θ(n2) worst case runtime. If we use an array, we can find the right

position in a worst case of Θ(logn) time using binary search, but we then have to shift over
the larger items to make room for the new item. Since there are n items, we once again get a
worst case runtime of Θ(n2).
Best case: Θ(n) - If the list is almost sorted and has only Θ(n) inversions, then we only have
to do Θ(n) swaps over all the items, giving us a best case runtime of Θ(n).

(b) Quicksort.
Worst case: Θ(n2) - If we end up always choosing the smallest item or largest item for our
next pivot, each partition of a sub-array of size m will leave us with only one non-empty
partition of size m− 1, since every other item will be larger than or smaller than our pivot.
With a total of n elements, we end up recursing n times, each time doing a linear time
partition, for a total of Θ(n2) time.
Best case: Θ(n logn) - If we can always partition our sub-arrays roughly in half, our recursive
call tree is identical to that of merge sort.

(c) Merge sort.
Worst case: Θ(n logn) - At each level of our tree, we split the list into two halves, so we
have logn levels. We have to do comparisons for all of the elements at each level, so our
runtime is Θ(n logn). Another approach is to sum up the amount of work done at each level
of the call tree. Each level has 2i nodes, and each node does n/(2i) amount of work from the
linear-time merging operation. So that total amount of work is ∑

logn
i=0 2i( n

2i ) = n logn.
Best case: Θ(n logn) - We still have to do all of the comparisons between items regardless
of their ordering, so our worst case runtime is also our best case runtime.

(d) Heapsort.
Worst case: Θ(n logn) - For this procedure we use a max-heap. If all of the items are dis-
tinct, then creating a valid heap from the array takes Θ(n) time using the Heapify procedure
discussed in lab. Then we keep removing the maximum valued item (the root), but this takes
Θ(logn) for each item since we have to replace the root with the last item and bubble it
down. Since there are n items, this takes Θ(n logn) time. Θ(n)+Θ(n logn) = Θ(n logn).
Best case: Θ(n) - If all of the items are the same, removing the maximum valued item takes
Θ(1) time since we don’t have to bubble the new root down. This gives us a runtime of Θ(n).

(e) Radix Sort.
Worst case: Θ(nk) - There are n items, and each have approximately k digits. For each of
these digits, we have to look through all n numbers and sort them by that digit. Since there
are k digits and n integers, this gives us a runtime of Θ(nk).
Best case: LSD: Θ(nk) - For LSD, you still have to look through all n items k times regardless
of the input, so you get Θ(nk).
MSD: Θ(nk) - MSD radix sort can short-circuit once each item is in its own bucket. If n ≤ r,

CS 61B, Fall 2019, Discussion 10 Solution 3



where r is the size of the radix, then it’s possible to get each item in its own bucket after
only 1 pass of counting sort. This yields a runtime of Θ(n). However, this is not strictly a
correct asymptotic runtime. As n grows towards infinity and becomes greater than r, it’s not
possible to put every item in its own bucket after looking at only the most significant digit.
We need to look at at least logr n digits to possibly get all of our items in their own buckets
and end MSD early. If logr n is greater than k, the length of our items, we can’t end MSD
early and will simply go through the entire k passes of counting sort, leading to a runtime of
Θ(nk) regardless of input.

4 Comparing Algorithms
(a) Give an example of a situation where using insertion sort is more efficient than using merge

sort.
Insertion sort performs better than merge sort for lists that are already almost in sorted order
(i.e. if the list has only a few elements out of place or if all elements are within k positions of
their proper place and k < logN, as this implies that there are less than N logN inversions).

(b) When might you decide to use radix sort over a comparison sort, and vice versa?
Radix sort gives us nk and comparison sorts can be no faster than n logn. When what we’re
trying to sort is bounded by a small k (such as short binary sequences), it might make more
sense to run radix sort. Comparison sorts are more general-purpose, and are better when the
items you’re trying to sort don’t make sense from a lexicographic perspective or can’t be split
up into individual "digits" on which you can run counting sort. However, if comparisons take
a long time, radix sort might be a better option. Consider sorting many strings of very long
length that are very similar. Using a comparison sort will take at least n logn comparisons,
but each comparison may require us to iterate through entire strings, giving us a runtime
of nL logn, where L is the average length of our strings. Meanwhile, radix sort will give
us a better runtime of nL. On the other hand, if our long strings are very dissimilar, our
comparisons will take constant time because we can quickly determine that 2 strings are
unequal. In this case, a comparison sort’s runtime can be n logn, which will likely be smaller
than a radix sort’s nL runtime.

CS 61B, Fall 2019, Discussion 10 Solution 4


