
CS 61B Heaps of Hashing Fall 2019

1 Heaps of fun R©

(a) Assume that we have a binary min-heap (smallest value on top) data structure called Heap that stores
integers and has properly implemented insert and removeMin methods. Draw the heap and its
array representation after each of the operations below:

Heap h = new Heap(5); // Creates a min-heap with 5 as the root
h.insert(7);
h.insert(3);
h.insert(1);
h.insert(2);
h.removeMin();
h.removeMin();

(b) Consider an array-based min-heap with N elements. What is the worst case asymptotic run time of
each of the following operations if we ignore resizing? What is the worst case asymptotic run time
if we take into account resizing? What are the advantages of using an array-based heap vs. using a
node-based heap?

Ignore Resize With Resize
Insert ______ ______
Find Min ______ ______
Remove Min ______ ______

(c) You are tasked to implement a max-heap data structure of integers using only a min-heap of integers.
Could you complete the task? If so, describe your approach. If not, explain why it’s impossible.

2 HashMap Modification (from 61BL SU2010 MT2)
(a) When you modify a key that has been inserted into a HashMap, will you be able to retrieve that entry

again? Explain.

� Always � Sometimes � Never

CS 61B, Fall 2019, Heaps of Hashing 1



(b) When you modify a value that has been inserted into a HashMap, will you be able to retrieve that entry
again? Explain.

� Always � Sometimes � Never

3 Hash Functions
(a) Here are four potential implementations of the Integer’s hashCode() function. Categorize each

as either a valid or an invalid hash function. If it is invalid, explain why. If it is valid, point out a flaw
or disadvantage.

A few notes: A “valid” hashCode() means that any two Integers that are .equals() to
each other should also return the same hash code value. In additon, the Integer class extends the
Number class, a direct subclass of Object. The Number class’ hashCode() method directly
calls the Object class’ hashCode() method.

(1) public int hashCode() {
return -1;

}

(2) public int hashCode() {
return intValue() * intValue();

}

(3) public int hashCode() {
Random rand = new Random();
return rand.nextInt();

}

(4) public int hashCode() {
return super.hashCode();

}

(b) Suppose that we represent Tic-Tac-Toe boards as 3 by 3 arrays of integers (with each integer in the
range 0 to 2 to represent blank, ‘X’, and ‘O’ respectively). Describe a hash function for Tic-Tac-Toe
boards that are represented in this way such that boards that are not equal will never have the same
hash code.

(c) Is it possible to add arbitrarily many Strings to a Java HashSet with no collisions? If not, what is
the minimum number of distinct Strings you need to add to a HashSet to guarantee a collision?

(A few useful hints: Java arrays have a maximum size of 231 − 1, and Java HashSet’s underlying
array’s size is always a power of 2.)

CS 61B, Fall 2019, Heaps of Hashing 2


