CS61B Lecture #16: Complexity

Last modified: Sun Oct 6 13:57:15 2019

What Are the Questions?

Cost is a principal concern throughout engineering:

"An engineer is someone who can do for a dime what any fool can do for a dollar."

- Cost can mean
 - Operational cost (for programs, time to run, space requirements).
 - Development costs: How much engineering time? When delivered?
 - Maintenance costs: Upgrades, bug fixes.
 - Costs of failure: How robust? How safe?
- Is this program *fast enough*? Depends on:
 - For what purpose;
 - For what input data.
- How much space (memory, disk space)?
 - Again depends on what input data.
- How will it scale, as input gets big?

Enlightening Example

Problem: Scan a text corpus (say 10^8 bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.

- Solution 1 (Knuth): Heavy-Duty data structures
 - Hash Trie implementation, randomized placement, pointers galore, several pages long.
- Solution 2 (Doug McIlroy): UNIX shell script:

```
tr -c -s '[:alpha:]' '[\n*]' < FILE | \
sort | \
uniq -c | \
sort -n -r -k 1,1 | \
sed 20q
```

- Which is better?
 - #1 is much faster,
 - but #2 took 5 minutes to write and processes 100MB in ≈ 50 sec.
 - I pick #2.
- In very many cases, almost anything will do: Keep It Simple.

Cost Measures (Time)

- Wall-clock or execution time
 - You can do this at home:

time java FindPrimes 1000

- Advantages: easy to measure, meaning is obvious.
- Appropriate where time is critical (real-time systems, e.g.).
- Disadvantages: applies only to specific data set, compiler, machine, etc.
- Dynamic statement counts of # of times statements are executed:
 - Advantages: more general (not sensitive to speed of machine).
 - Disadvantages: doesn't tell you actual time, still applies only to specific data sets.
- Symbolic execution times:
 - That is, formulas for execution times as functions of input size.
 - Advantages: applies to all inputs, makes scaling clear.
 - Disadvantage: practical formula must be approximate, may tell very little about actual time.

Asymptotic Cost

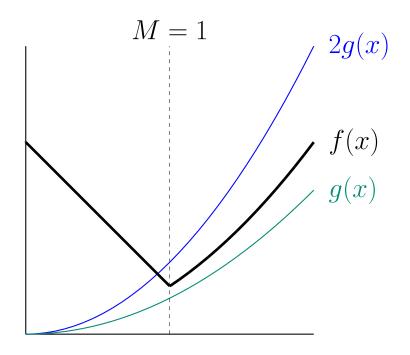
- Symbolic execution time lets us see shape of the cost function.
- Since we are approximating anyway, pointless to be precise about certain things:
 - Behavior on small inputs:
 - * Can always pre-calculate some results.
 - * Times for small inputs not usually important.
 - * Often more interested in asymptotic behavior as input size becomes very large.
 - Constant factors (as in "off by factor of 2"):
 - * Just changing machines causes constant-factor change.
- How to abstract away from (i.e., ignore) these things?

Handy Tool: Order Notation

- Idea: Don't try to produce specific functions that specify size, but rather families of functions with similarly behaved magnitudes.
- ullet Then say something like "f is bounded by g if it is in g's family."
- ullet For any function g(x), the functions 2g(x), 0.5g(x), or for any K>0, $K \cdot g(x)$, all have the same "shape". So put all of them into g's family.
- ullet Any function h(x) such that $h(x) = K \cdot g(x)$ for x > M (for some constant M) has g's shape "except for small values." So put all of these in g's family.
- For upper limits, throw in all functions whose absolute value is everywhere \leq some member of g's family. Call this set O(g) or O(g(n)).
- Or, for lower limits, throw in all functions whose absolute values is everywhere \geq some member of g's family. Call this set $\Omega(g)$.
- Finally, define $\Theta(g) = O(g) \cap \Omega(g)$ —the set of functions bracketed in magnitude by two members of g's family.

Big Oh

Goal: Specify bounding from above.



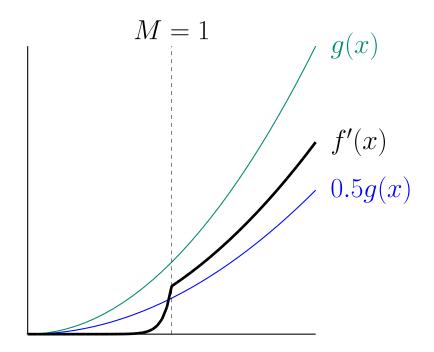
- \bullet Here, $f(x) \leq 2g(x)$ as long as x > 1,
- ullet So f(x) is in g's "bounded-above family," written

$$f(x) \in O(g(x)),$$

ullet ... even though (in this case) f(x)>g(x) everywhere.

Big Omega

Goal: Specify bounding from below:



- \bullet Here, $f'(x) \geq \frac{1}{2}g(x)$ as long as x > 1,
- So f'(x) is in g's "bounded-below family," written

$$f'(x) \in \Omega(g(x)),$$

• ... even though f(x) < g(x) everywhere.

Big Theta

- ullet In the two previous slides, we not only have $f(x) \in O(g(x))$ and $f'(x) \in \Omega(g(x)), \dots$
- ullet ... but also $f(x) \in \Omega(g(x))$ and $f'(x) \in O(g(x))$.
- ullet We can summarize this all by saying $f(x) \in \Theta(g(x))$ and $f'(x) \in \Theta(g(x))$ $\Theta(g(x))$.

Aside: Various Mathematical Pedantry

• Technically, if I am going to talk about $O(\cdot)$, $\Omega(\cdot)$ and $\Theta(\cdot)$ as sets of functions, I really should write, for example,

$$f \in O(g)$$
 instead of $f(x) \in O(g(x))$

- In effect, $f(x) \in O(g(x))$ is short for $\lambda x. f(x) \in O(\lambda x. g(x))$.
- ullet The standard notation outside this course, in fact, is f(x) = O(g(x)), but personally, I think that's a serious abuse of notation.

How We Use Order Notation

- ullet Elsewhere in mathematics, you'll see $O(\ldots)$, etc., used generally to specify bounds on functions.
- For example,

$$\pi(N) = \Theta(\frac{N}{\ln N})$$

which I would prefer to write

$$\pi(N) \in \Theta(\frac{N}{\ln N})$$

(Here, $\pi(N)$ is the number of primes less than or equal to N.)

Also, you'll see things like

$$f(x) = x^3 + x^2 + O(x)$$
 (or $f(x) \in x^4 + x^2 + O(x)$),

meaning that $f(x) = x^3 + x^2 + g(x)$ where $g(x) \in O(x)$.

• For our purposes, the functions we will be bounding will be cost functions: functions that measure the amount of execution time or the amount of space required by a program or algorithm.

Why It Matters

- Computer scientists often talk as if constant factors didn't matter at all, only the difference of $\Theta(N)$ vs. $\Theta(N^2)$.
- In reality they do matter, but at some point, constants always get swamped.

n	$\log n$	\sqrt{n}	n	$n \lg n$	n^2	n^3	2^n
2	16	1.4	2	2	4	8	4
4	32	2	4	8	16	64	16
8	48	2.8	8	24	64	512	256
16	64	4	16	64	256	4,096	65,636
32	80	5.7	32	160	1024	32,768	4.2×10^9
64	96	8	64	384	4,096	262, 144	1.8×10^{19}
128	112	11	128	896	16,384	2.1×10^9	3.4×10^{38}
•	:	:	:		•	•	:
1,024	160	32	1,024	10,240	1.0×10^{6}	1.1×10^9	1.8×10^{308}
•	:	:	:	:	•	•	•
2^{20}	320	1024	1.0×10^{6}	2.1×10^7	1.1×10^{12}	1.2×10^{18}	$6.7 \times 10^{315,652}$

Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N.
- Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- \bullet N =problem size.

Time (μ sec) for	Max N Possible in					
problem size ${\cal N}$	1 second	1 hour	1 month	1 century		
$\lg N$	10^{300000}	$10^{10000000000}$	$10^{8\cdot 10^{11}}$	$10^{10^{14}}$		
N	10^{6}	$3.6 \cdot 10^9$	$2.7 \cdot 10^{12}$	$3.2 \cdot 10^{15}$		
$N \lg N$	63000	$1.3 \cdot 10^{8}$	$7.4 \cdot 10^{10}$	$6.9 \cdot 10^{13}$		
N^2	1000	60000	$1.6 \cdot 10^{6}$	$5.6 \cdot 10^7$		
N^3	100	1500	14000	150000		
2^N	20	32	41	51		

Using the Notation

- Can use this order notation for any kind of real-valued function.
- We will use them to describe cost functions. Example:

```
/** Find position of X in list L, or -1 if not found. */
int find(List L, Object X) {
   int c;
  for (c = 0; L != null; L = L.next, c += 1)
      if (X.equals(L.head)) return c;
  return -1:
```

- Choose representative operation: number of .equals tests.
- ullet If N is length of L, then loop does at most N tests: worst-case time is N tests.
- In fact, total # of instructions executed is roughly proportional to N in the worst case, so can also say worst-case time is O(N), regardless of units used to measure.
- Use N>M provision (in defn. of $O(\cdot)$) to ignore empty list.

Be Careful

- ullet It's also true that the worst-case time is $O(N^2)$, since $N\in O(N^2)$ also: Big-Oh bounds are loose.
- ullet The worst-case time is $\Omega(N)$, since $N\in\Omega(N)$, but that does not mean that the loop always takes time N, or even $K \cdot N$ for some K.
- Instead, we are just saying something about the function that maps N into the *largest possible* time required to process any array of length N.
- To say as much as possible about our worst-case time, we should try to give a Θ bound: in this case, we can: $\Theta(N)$.
- But again, that still tells us nothing about best-case time, which happens when we find X at the beginning of the loop. Best-case time is $\Theta(1)$.

Effect of Nested Loops

Nested loops often lead to polynomial bounds:

```
for (int i = 0; i < A.length; i += 1)
   for (int j = 0; j < A.length; j += 1)
      if (i != j && A[i] == A[j])
         return true;
return false;
```

- ullet Clearly, time is $O(N^2)$, where N=A.length. Worst-case time is $\Theta(N^2)$.
- Loop is inefficient though:

```
for (int i = 0; i < A.length; i += 1)
   for (int j = i+1; j < A.length; j += 1)
      if (A[i] == A[j]) return true;
return false;
```

Now worst-case time is proportional to

$$N-1+N-2+\ldots+1=N(N-1)/2\in\Theta(N^2)$$

(so asymptotic time unchanged by the constant factor).

Recursion and Recurrences: Fast Growth

 Silly example of recursion. In the worst case, both recursive calls happen:

```
/** True iff X is a substring of S */
boolean occurs(String S, String X) {
  if (S.equals(X)) return true;
  if (S.length() <= X.length()) return false;
  return
    occurs(S.substring(1), X) ||
    occurs(S.substring(0, S.length()-1), X);
}</pre>
```

ullet Define C(N) to be the worst-case cost of occurs(S,X) for S of length N, X of fixed size N_0 , measured in # of calls to occurs. Then

$$C(N) = \begin{cases} 1, & \text{if } N \leq N_0, \\ 2C(N-1) + 1 & \text{if } N > N_0 \end{cases}$$

ullet So C(N) grows exponentially:

$$C(N) = 2C(N-1) + 1 = 2(2C(N-2) + 1) + 1 = \dots = \underbrace{2(\dots 2 \cdot 1 + 1) + \dots + 1}_{N-N_0}$$
$$= 2^{N-N_0} + 2^{N-N_0-1} + 2^{N-N_0-2} + \dots + 1 = 2^{N-N_0+1} - 1 \in \Theta(2^N)$$

Binary Search: Slow Growth

```
/** True X iff is an element of S[L .. U]. Assumes
   S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn(String X, String[] S, int L, int U) {
  if (L > U) return false;
  int M = (L+U)/2:
  int direct = X.compareTo(S[M]);
  if (direct < 0) return isIn(X, S, L, M-1);</pre>
  else if (direct > 0) return isIn(X, S, M+1, U);
  else return true;
```

- ullet Here, worst-case time, C(D), (as measured by # of calls to .compareTo), depends on size D = U - L + 1.
- We eliminate S[M] from consideration each time and look at half the rest. Assume $D = 2^k - 1$ for simplicity, so:

$$C(D) = \begin{cases} 0, & \text{if } D \le 0, \\ 1 + C((D-1)/2), & \text{if } D > 0. \end{cases}$$
$$= \underbrace{1 + 1 + \ldots + 1}_{k} + 0$$
$$= k = \lg(D+1) \in \Theta(\lg D)$$

Another Typical Pattern: Merge Sort

```
List sort(List L) {
  if (L.length() < 2) return L;</pre>
  Split L into L0 and L1 of about equal size; dered list") takes time proportional
  return Merge of LO and L1
```

to size of its result.

ullet Assuming that size of L is $N=2^k$, worst-case cost function, C(N), counting just merge time (which is proportional to # items merged):

$$C(N) = \begin{cases} 0, & \text{if } N < 2; \\ 2C(N/2) + N, & \text{if } N \ge 2. \end{cases}$$

$$= 2(2C(N/4) + N/2) + N$$

$$= 4C(N/4) + N + N$$

$$= 8C(N/8) + N + N + N$$

$$= N \cdot 0 + \underbrace{N + N + N + N}_{k=\lg N}$$

$$= N \lg N$$

ullet In general, can say it's $\Theta(N \lg N)$ for arbitrary N (not just 2^k).