
CS61B Lecture #17

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 1



Topics

• Overview of standard Java Collections classes.

– Iterators, ListIterators

– Containers and maps in the abstract

• Amortized analysis of implementing lists with arrays.

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 2



Data Types in the Abstract

• Most of the time, should not worry about implementation of data
structures, search, etc.

• What they do for us—their specification—is important.

• Java has several standard types (in java.util) to represent collec-
tions of objects

– Six interfaces:

∗ Collection: General collections of items.

∗ List: Indexed sequences with duplication

∗ Set, SortedSet: Collections without duplication

∗ Map, SortedMap: Dictionaries (key 7→ value)

– Concrete classes that provide actual instances: LinkedList, ArrayList,
HashSet, TreeSet.

– To make change easier, purists would use the concrete types only
for new, interfaces for parameter types, local variables.

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 3



Collection Structures in java.util

Collection

List Set

SortedSet

LinkedList ArrayList Vector HashSet TreeSet

StackMap

SortedMap

HashMap WeakHashMap TreeMap

Key:

interface

class

: extends
: implements

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 4



The Collection Interface

• Collection interface. Main functions promised:

– Membership tests: contains (∈), containsAll (⊆)

– Other queries: size, isEmpty

– Retrieval: iterator, toArray

– Optional modifiers: add, addAll, clear, remove, removeAll (set
difference), retainAll (intersect)

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 5



Side Trip about Library Design: Optional Operations

• Not all Collections need to be modifiable; often makes sense just
to get things from them.

• So some operations are optional (add, addAll, clear, remove, removeAll,
retainAll)

• The library developers decided to have all Collections implement
these, but allowed implementations to throw an exception:

UnsupportedOperationException

• An alternative design would have created separate interfaces:

interface Collection { contains, containsAll, size, iterator, ... }

interface Expandable extends Collection { add, addAll }

interface Shrinkable extends Collection { remove, removeAll, ... }

interface ModifiableCollection

extends Collection, Expandable, Shrinkable { }

• You’d soon have lots of interfaces. Perhaps that’s why they didn’t
do it that way.

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 6



The List Interface

• Extends Collection

• Intended to represent indexed sequences (generalized arrays)

• Adds new methods to those of Collection:

– Membership tests: indexOf, lastIndexOf.

– Retrieval: get(i), listIterator(), sublist(B,E).

– Modifiers: add and addAll with additional index to say where to
add. Likewise for removal operations. set operation to go with
get.

• Type ListIterator<Item> extends Iterator<Item>:

– Adds previous and hasPrevious.

– add, remove, and set allow one to iterate through a list, inserting,
removing, or changing as you go.

– Important Question: What advantage is there to saying List L

rather than LinkedList L or ArrayList L?

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 7



Implementing Lists (I): ArrayLists

• The main concrete types in Java library for interface List are
ArrayList and LinkedList:

• As you might expect, an ArrayList, A, uses an array to hold data.
For example, a list containing the three items 1, 4, and 9 might be
represented like this:

A:
data:

3count:

1 4 9

• After adding four more items to A, its data array will be full, and
the value of data will have to be replaced with a pointer to a new,
bigger array that starts with a copy of its previous values.

• Question: For best performance, how big should this new array be?

• If we increase the size by 1 each time it gets full (or by any con-
stant value), the cost of N additions will scale as Θ(N 2), which
makes ArrayList look much worse than LinkedList (which uses an
IntList-like implementation.)

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 8



Expanding Vectors Efficiently

• When using array for expanding sequence, best to double the size
of array to grow it. Here’s why.

• If array is size s, doubling its size and moving s elements to the new
array takes time proportional to 2s.

• In all cases, there is an additional Θ(1) cost for each addition to
account for actually assigning the new value into the array.

• When you add up these costs for inserting a sequence of N items,
the total cost turns out to be proportional to N , as if each addition
took constant time, even though some of the additions actually take
time proportional to N all by themselves!

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 9



Amortized Time

• Suppose that the actual costs of a sequence of N operations are
c0, c1, . . . , cN−1, which may differ from each other by arbitrary amounts
and where ci ∈ O(f(i)).

• Consider another sequence a0, a1, . . . , aN−1, where ai ∈ O(g(i)).

• If
∑

0≤i<k
ai ≥

∑

0≤i<k
ci for all k,

we say that the operations all run in O(g(i)) amortized time.

• That is, the actual cost of a given operation, ci, may be arbitrarily
larger than the amortized time, ai, as long as the total amortized
time is always greater than or equal to the total actual time, no
matter where the sequence of operations stops—i.e., no matter what
k is.

• In cases of interest, the amortized time bounds are much less than
the actual individual time bounds: g(i) ≪ f(i).

• E.g., for the case of insertion with array doubling, f(i) ∈ O(N) and
g(i) ∈ O(1).

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 10



Amortization: Expanding Vectors (II)

To Insert Resizing Cumulative Resizing Cost Array Size
Item # Cost Cost per Item After Insertions

0 0 0 0 1
1 2 2 1 2
2 4 6 2 4
3 0 6 1.5 4
4 8 14 2.8 8
5 0 14 2.33 8
... ... ... ... ...
7 0 14 1.75 8
8 16 30 3.33 16
... ... ... ... ...
15 0 30 1.88 16
... ... ... ... ...

2m + 1 to 2m+1 − 1 0 2m+2 − 2 ≈ 2 2m+1

2m+1 2m+2 2m+3 − 2 ≈ 4 2m+2

• If we spread out (amortize) the cost of resizing, we average at most
about 4 time units for resizing on each item: “amortized resizing
time is 4 units.” Time to add N elements is Θ(N), not Θ(N 2).

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 11



Demonstrating Amortized Time: Potential Method

• To formalize the argument, associate a potential, Φi ≥ 0, to the ith

operation that keeps track of “saved up” time from cheap operations
that we can “spend” on later expensive ones. Start with Φ0 = 0.

• Now we pretend that the cost of the ith operation is actually ai, the
amortized cost, defined

ai = ci + Φi+1 − Φi,

where ci is the real cost of the operation. Or, looking at potential:

Φi+1 = Φi + (ai − ci)

• On cheap operations, we artificially set ai > ci so that we can in-
crease Φ (Φi+1 > Φi).

• On expensive ones, we typically have ai ≪ ci and greatly decrease Φ
(but don’t let it go negative—may not be “overdrawn”).

• We try to do all this so that ai remains as we desired (e.g., O(1) for
expanding array), without allowing Φi < 0.

• Requires that we choose ai so that Φi always stays ahead of ci.

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 12



Application to Expanding Arrays

• When adding to our array, the cost, ci, of adding element #i when
the array already has space for it is 1 unit.

• The array does not initially have space when adding items 1, 2, 4, 8,
16,. . . —in other words at item 2n for all n ≥ 0. So,

– ci = 1 if i ≥ 0 and is not a power of 2; and

– ci = 2i + 1 when i is a power of 2 (copy i items, clear another i

items, and then add item #i).

• So on each operation #2n we’re going to need to have saved up at
least 2·2n = 2n+1 units of potential to cover the expense of expanding
the array, and we have this operation and the preceding 2n−1 − 1
operations in which to save up this much potential (everything since
the preceding doubling operation).

• So choose a0 = 1 and ai = 5 for i > 0. Apply Φi+1 = Φi + (ai − ci), and
here is what happens:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ci 1 3 5 1 9 1 1 1 17 1 1 1 1 1 1 1 33 1
ai 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Φi 0 0 2 2 6 2 6 10 14 2 6 10 14 18 22 26 30 2

Pretending each cost is
5 never underestimates
true cumulative time.

Last modified: Sun Oct 6 14:43:32 2019 CS61B: Lecture #17 13


	CS61B Lecture #17
	Topics
	Data Types in the Abstract
	Collection Structures in java.util
	The Collection Interface
	Side Trip about Library Design: Optional Operations
	The List Interface
	Implementing Lists (I): ArrayLists
	Expanding Vectors Efficiently
	Amortized Time
	Amortization: Expanding Vectors (II)
	Demonstrating Amortized Time: Potential Method
	Application to Expanding Arrays

