Back to Simple Search

- Linear search is OK for small data sets, bad for large.
- So linear search would be OK *if* we could rapidly narrow the search to a few items.
- Suppose that in constant time could put any item in our data set into a numbered *bucket*, where # buckets stays within a constant factor of # keys.
- Suppose also that buckets contain roughly equal numbers of keys.
- Then search would be constant time.
Hash functions

- To do this, must have way to convert key to bucket number: a hash function.

 "hash /hæʃ/ 2a a mixture; a jumble. b a mess." Concise Oxford Dictionary, eighth edition

- Example:
 - $N = 200$ data items.
 - keys are longs, evenly spread over the range $0..2^{63} - 1$.
 - Want to keep maximum search to $L = 2$ items.
 - Use hash function $h(K) = K \% M$, where $M = N/L = 100$ is the number of buckets: $0 \leq h(K) < M$.
 - So 100232, 433, and 10002332482 go into different buckets, but 10, 400210, and 210 all go into the same bucket.
External chaining

• Array of M buckets.
• Each bucket is a list of data items.

- Not all buckets have same length, but average is $N/M = L$, the load factor.
- To work well, hash function must avoid collisions: keys that “hash” to equal values.
Ditching the Chains: Open Addressing

• Idea: Put one data item in each bucket.
• When there is a collision, and bucket is full, just use another.
• Various ways to do this:
 - Linear probes: If there is a collision at \(h(K) \), try \(h(K) + m, h(K) + 2m \), etc. (wrap around at end).
 - Quadratic probes: \(h(K) + m, h(K) + m^2, \ldots \)
 - Double hashing: \(h(K) + h'(K), h(K) + 2h'(K), \) etc.
• Example: \(h(K) = K \% M \), with \(M = 10 \), linear probes with \(m = 1 \).
 - Add 1, 2, 11, 3, 102, 9, 18, 108, 309 to empty table.

| 108 | 1 | 2 | 11 | 3 | 102 | 309 | 18 | 9 |

• Things can get slow, even when table is far from full.
• Lots of literature on this technique, but
• Personally, I just settle for external chaining.
Filling the Table

• To get (likely to be) constant-time lookup, need to keep \#buckets within constant factor of \#items.

• So resize table when load factor gets higher than some limit.

• In general, must *re-hash* all table items.

• Still, this operation constant time per item,

• So by doubling table size each time, get constant *amortized* time for insertion and lookup

• (Assuming, that is, that our hash function is good).
Hash Functions: Strings

• For String, "s₀s₁⋯sₙ₋₁" want function that takes all characters and their positions into account.

• What’s wrong with \(s₀ + s₁ + \ldots + sₙ₋₁ \)?

• For strings, Java uses
 \[
 h(s) = s₀ \cdot 31^{n-1} + s₁ \cdot 31^{n-2} + \ldots + sₙ₋₁
 \]
 computed modulo \(2^{32} \) as in Java int arithmetic.

• To convert to a table index in \(0..N - 1 \), compute \(h(s) \% N \) (but don’t use table size that is multiple of 31!)

• Not as hard to compute as you might think; don’t even need multiplication!

```java
int r; r = 0;
for (int i = 0; i < s.length(); i += 1)
    r = (r << 5) - r + s.charAt(i);
```
Hash Functions: Other Data Structures I

• Lists (ArrayList, LinkedList, etc.) are analogous to strings: e.g., Java uses

 hashCode = 1; Iterator i = list.iterator();
 while (i.hasNext()) {
 Object obj = i.next();
 hashCode =
 31*hashCode
 + (obj==null ? 0 : obj.hashCode());
 }

• Can limit time spent computing hash function by not looking at entire list. For example: look only at first few items (if dealing with a List or SortedSet).

• Causes more collisions, but does not cause equal things to go to different buckets.
Hash Functions: Other Data Structures II

- Recursively defined data structures \Rightarrow recursively defined hash functions.

- For example, on a binary tree, one can use something like

  ```java
  hash(T):
    if (T == null)
      return 0;
    else return someHashFunction (T.label ()) ^ hash(T.left ()) ^ hash(T.right ());
  ```
Identity Hash Functions

- Can use address of object ("hash on identity") if distinct (!=) objects are never considered equal.

- But careful! Won't work for Strings, because .equal Strings could be in different buckets:

  ```java
  String H = "Hello",
  S1 = H + ", world!",
  S2 = "Hello, world!";
  ```

- Here S1.equals(S2), but S1 != S2.
What Java Provides

• In class `Object`, is function `hashCode()`.

• By default, returns the identity hash function, or something similar. [Why is this OK as a default?]

• Can override it for your particular type.

• For reasons given on last slide, is overridden for type `String`, as well as many types in the Java library, like all kinds of `List`.

• The types `Hashtable`, `HashSet`, and `HashMap` use `hashCode` to give you fast look-up of objects.

```java
HashMap<KeyType,ValueType> map =
    new HashMap<>(approximate size, load factor);
map.put(key, value); // Map KEY -> VALUE.
... map.get(someKey)  // VALUE last mapped to by SOMEKEY.
... map.containsKey(someKey) // Is SOMEKEY mapped?
... map.keySet()     // All keys in MAP (a Set)
```
Special Case: Monotonic Hash Functions

- Suppose our hash function is \textit{monotonic}: either nonincreasing or nondecreasing.
- So, e.g., if key $k_1 > k_2$, then $h(k_1) \geq h(k_2)$.
- Example:
 - Items are time-stamped records; key is the time.
 - Hashing function is to have one bucket for every hour.
- In this case, you \textit{can} use a hash table to speed up range queries [How?]?
- Could this be applied to strings? When would it work well?
Perfect Hashing

- Suppose set of keys is **fixed**.
- A tailor-made hash function might then hash every key to a different value: **perfect hashing**.
- In that case, there is no search along a chain or in an open-address table: either the element at the hash value is or is not equal to the target key.
- For example, might use first, middle, and last letters of a string (read as a 3-digit base-26 numeral). Would work if those letters differ among all strings in the set.
- Or might use the Java method, but tweak the multipliers until all strings gave different results.
Characteristics

• Assuming good hash function, add, lookup, deletion take $\Theta(1)$ time, amortized.

• Good for cases where one looks up equal keys.

• Usually bad for range queries: “Give me every name between Martin and Napoli.” [Why?]

• Hashing is probably not a good idea for small sets that you rapidly create and discard [why?]
Comparing Search Structures

Here, N is \#items, k is \#answers to query.

<table>
<thead>
<tr>
<th>Function</th>
<th>Unordered List</th>
<th>Sorted Array</th>
<th>Bushy Search Tree</th>
<th>“Good” Hash Table</th>
<th>Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>$\Theta(N)$</td>
<td>$\Theta(lg , N)$</td>
<td>$\Theta(lg , N)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(N)$</td>
</tr>
<tr>
<td>add (amortized)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(N)$</td>
<td>$\Theta(lg , N)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(lg , N)$</td>
</tr>
<tr>
<td>range query</td>
<td>$\Theta(N)$</td>
<td>$\Theta(k + lg , N)$</td>
<td>$\Theta(k + lg , N)$</td>
<td>$\Theta(N)$</td>
<td>$\Theta(N)$</td>
</tr>
<tr>
<td>find largest</td>
<td>$\Theta(N)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(lg , N)$</td>
<td>$\Theta(N)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>remove largest</td>
<td>$\Theta(N)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(lg , N)$</td>
<td>$\Theta(N)$</td>
<td>$\Theta(lg , N)$</td>
</tr>
</tbody>
</table>