Announcements:

- Homework #4 was extended to tonight.
- Auto-grader for project will run early Tuesday morning, and then not until after deadline.
- Please use bug-submit for code problems (now works!).

Readings for Today: Data Structures (Into Java), Chapter 1;

Readings for next Topics: Data Structures, Chapter 2-4, Head First Java, Chapter 16.

What Are the Questions?

- Cost is a principal concern throughout engineering:
 “An engineer is someone who can do for a dime what any fool can do for a dollar.”
- Cost can mean
 - Operational cost (for programs, time to run, space requirements).
 - Development costs: How much engineering time? When delivered?
 - Costs of failure: How robust? How safe?
- Is this program fast enough? Depends on:
 - For what purpose;
 - What input data.
- How much space (memory, disk space)?
 - Again depends on what input data.
- How will it scale, as input gets big?

Enlightening Example

Problem: Scan a text corpus (say 10^7 bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.

- Solution 1 (Knuth): Heavy-Duty data structures
 - Hash Trie implementation, randomized placement, pointers galore, several pages long.
- Solution 2 (Doug McIlroy): UNIX shell script:
  ```bash
  tr -c -s '[:alpha:]' '[:\n*]' < FILE | \
  sort | \
  uniq -c | \
  sort -n -r -k 1,1 | \
  sed 20q
  ```
- Which is better?
 - #1 is much faster,
 - but #2 took 5 minutes to write and processes 20MB in 1 minute.
 - I pick #2.
- In most cases, anything will do: Keep It Simple.

Cost Measures (Time)

- Wall-clock or execution time
 - You can do this at home:
    ```bash
    time java FindPrimes 1000
    ```
 - Advantages: easy to measure, meaning is obvious.
 - Appropriate where time is critical (real-time systems, e.g.).
 - Disadvantages: applies only to specific data set, compiler, machine, etc.
- Number of times certain statements are executed:
 - Advantages: more general (not sensitive to speed of machine).
 - Disadvantages: doesn't tell you actual time, still applies only to specific data sets.
- Symbolic execution times:
 - That is, formulas for execution times or statement counts in terms of input size.
 - Advantages: applies to all inputs, makes scaling clear.
 - Disadvantage: practical formula must be approximate, may tell very little about actual time.
Asymptotic Cost

• Symbolic execution time lets us see shape of the cost function.
• Since we are approximating anyway, pointless to be precise about certain things:
 - Behavior on small inputs:
 * Can always pre-calculate results some results.
 * Times for small inputs not usually important.
 - Constant factors (as in "off by factor of 2"):
 * Just changing machines causes constant-factor change.
• How to abstract away from (i.e., ignore) these things?

Handy Tool: Order Notation

• Idea: Don’t try to produce specific functions that specify size, but rather families of similar functions.
• Say something like "f is bounded by g if it is in g’s family."
• For any function g(x), the functions 2g(x), 1000g(x), or for any K > 0, K · g(x), all have the same “shape”. So put all of them into g’s family.
• Any function h(x) such that h(x) = K · g(x) for x > M (for some constant M) has g’s shape “except for small values.” So put all of these in g’s family.
• If we want upper limits, throw in all functions that are everywhere ≤ some other member of g’s family. Call this family O(g) or O(g(n)).
• Or, if we want lower limits, throw in all functions that are everywhere ≥ some other member of g’s family. Call this family \(\Omega(g) \).
• Finally, define \(\Theta(g) = O(g) \cap \Omega(g) \)—the set of functions bracketed by members of g’s family.

Big Oh

• Goal: Specify bounding from above.

\[
M = 1 \quad \quad 2g(x) \quad f(x) \quad g(x)
\]

• Here, \(f(x) \leq 2g(x) \) as long as \(x > 1 \),
• So \(f(x) \) is in g’s upper-bound family, written \(f(x) \in O(g(x)) \),
• …even though \(f(x) > g(x) \) everywhere.

Big Omega

• Goal: Specify bounding from below:

\[
M = 1 \quad \quad g(x) \quad f'(x) \quad 0.5g(x)
\]

• Here, \(f'(x) \geq \frac{1}{2}g(x) \) as long as \(x > 1 \),
• So \(f'(x) \) is in g’s lower-bound family, written \(f'(x) \in \Omega(g(x)) \),
• …even though \(f(x) < g(x) \) everywhere.
• In fact, we also have \(f'(x) \in O(g(x)) \) and \(f(x) \in \Omega(g(x)) \) and so we can also write \(f(x), f'(x) \in \Theta(g(x)) \).
Using the Notation

• Can use this order notation for any kind of real-valued function.
• We will use them to describe cost functions. Example:
  ```java
  /** Find position of X in list L. Return -1 if not found */
  int find (List L, Object X) {
      int c;
      for (c = 0; L != null; L = L.next, c += 1)
          if (X.equals (L.head)) return c;
      return -1;
  }
  ```
• Choose representative operation: number of .equals tests.
• If N is length of L, then loop does at most N tests: worst-case time is N tests.
• In fact, total # of instructions executed is roughly proportional to N in the worst case, so can also say worst-case time is \(O(N) \), regardless of units used to measure.
• Use \(N > M \) provision (in defn. of \(O(\cdot) \)) to handle empty list.

Why It Matters

• Computer scientists often talk as if constant factors didn’t matter at all, only the difference of \(\Theta(N) \) vs. \(\Theta(N^2) \).
• In reality they do, but we still have a point: at some point, constants get swamped.

<table>
<thead>
<tr>
<th>n</th>
<th>16 lg n</th>
<th>(\sqrt{n})</th>
<th>n lg n</th>
<th>(n^2)</th>
<th>(n^3)</th>
<th>(2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>1.4</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>2</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>2.8</td>
<td>8</td>
<td>24</td>
<td>64</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>4,096</td>
</tr>
<tr>
<td>32</td>
<td>80</td>
<td>5.7</td>
<td>32</td>
<td>160</td>
<td>512</td>
<td>32,768</td>
</tr>
<tr>
<td>64</td>
<td>96</td>
<td>8</td>
<td>64</td>
<td>384</td>
<td>262,144</td>
<td>1.8 \times 10^9</td>
</tr>
<tr>
<td>128</td>
<td>112</td>
<td>11</td>
<td>128</td>
<td>896</td>
<td>16,384</td>
<td>3.4 \times 10^18</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>1,024</td>
<td>160</td>
<td>32</td>
<td>1,024</td>
<td>10,240</td>
<td>1.0 \times 10^6</td>
<td>1.1 \times 10^9</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>2^{20}</td>
<td>320</td>
<td>1024</td>
<td>2.1 \times 10^7</td>
<td>1.1 \times 10^{12}</td>
<td>1.2 \times 10^{18}</td>
<td>6.7 \times 10^{315.652}</td>
</tr>
</tbody>
</table>

Careful!

• It’s also true that the worst-case time is \(O(N^2) \), since \(N \in O(N^2) \) also: Big-Oh bounds are loose.
• The worst-case time is \(\Omega(N) \), since \(N \in \Omega(N) \), but that does not mean that the loop always takes time \(N \), or even \(K \cdot N \) for some \(K \).
• Instead, we are just saying something about the function that maps \(N \) into the largest possible time required to process an array of length \(N \).
• To say as much as possible about our worst-case time, we should try to give a \(\Theta \) bound: in this case, we can: \(\Theta(N) \).
• But again, that still tells us nothing about best-case time, which happens when we find \(X \) at the beginning of the loop. Best-case time is \(\Theta(1) \).

Effect of Nested Loops

• Nested loops often lead to polynomial bounds:
  ```java
  for (int i = 0; i < A.length; i += 1)
  for (int j = 0; j < A.length; j += 1)
      if (i != j && A[i] == A[j])
          return true;
  return false;
  ```
• Clearly, time is \(O(N^2) \), where \(N = A.length \). Worst-case time is \(\Theta(N^2) \).
• Loop is inefficient though:
  ```java
  for (int i = 0; i < A.length; i += 1)
  for (int j = i+1; j < A.length; j += 1)
      if (A[i] == A[j]) return true;
  return false;
  ```
• Now worst-case time is proportional to \(N - 1 + N - 2 + \ldots + 1 = N(N-1)/2 \in \Theta(N^2) \).
 (so asymptotic time unchanged by the constant factor).
Silly example of recursion:

```java
/** True X iff is an element of S[L .. U]. Assumes
 * S in ascending order, 0 <= L <= U-1 < S.length. */
/** True iff X is a substring of S */
boolean occurs (String S, String X) {
    boolean isIn (String X, String[] S, int L, int U) {
        if (S.equals (X)) return true;
        if (S.length () <= X.length () return false;
        return
            occurs (S.substring (1), X) ||
            occurs (S.substring (0, S.length ()-1), X);
    }
    if (L > U) return false;
    int M = (L+U)/2;
    int direct = X.compareTo (S[M]);
    if (direct < 0) return isIn (X, S, L, M-1);
    else if (direct > 0) return isIn (X, S, M+1, U);
    else return true;
}
```

In the worst case, both recursive calls happen.

Consider a fixed size for X, say \(N \).

Define \(C(N) \) to be the worst-case cost of \(\text{occurs}(S,X) \) for \(S \) of length \(N \), measured in # of calls to \(\text{occurs} \).

\[
C(N) = \begin{cases}
1, & \text{if } N \leq N_0, \\
2C(N-1) & \text{if } N > N_0
\end{cases}
\]

So \(C(N) \) grows exponentially:

\[
C(N) = 2C(N-1) = 2 \cdot 2C(N-2) = \ldots = 2 \cdot 2 \cdot \ldots \cdot 2 = 2^{N-N_0} \in \Theta(2^N)
\]

Another Typical Pattern: Merge Sort

List sort (List L) {
 if (L.length () < 2) return L;
 Split L into L0 and L1 of about equal size:
 L0 = sort (L0); L1 = sort (L1);
 return Merge of L0 and L1;
}

Assuming that size of L is \(N = 2^k \), worst-case cost function, \(C(N) \), counting just merge time (\(\propto \) # items merged):

\[
C(N) = \begin{cases}
1, & \text{if } N < 2; \\
2C(N/2) + N, & \text{if } N \geq 2.
\end{cases}
\]

\[
= 2(2C(N/4) + N/2) + N
= 4C(N/4) + N + N
= 8C(N/8) + N + N + N
= \ldots
= N \cdot 1 + N + N + \ldots + N
\]

\[
= N + N \log N \in \Theta(N \log N)
\]

In general, \(\Theta(N \log N) \) for arbitrary \(N \) (not just \(2^k \)).

Binary Search: Slow Growth

```java
/** True X iff is an element of S[L .. U]. Assumes
 * S in ascending order, 0 <= L <= U-1 < S.length. */
/** True iff X is a substring of S */
boolean occurs (String S, String X) {
    boolean isIn (String X, String[] S, int L, int U) {
        if (S.equals (X)) return true;
        if (S.length () <= X.length () return false;
        return
            occurs (S.substring (1), X) ||
            occurs (S.substring (0, S.length ()-1), X);
    }
    if (L > U) return false;
    int M = (L+U)/2;
    int direct = X.compareTo (S[M]);
    if (direct < 0) return isIn (X, S, L, M-1);
    else if (direct > 0) return isIn (X, S, M+1, U);
    else return true;
}
```

Here, worst-case time, \(C(D) \), (as measured by # of string comparisons), depends on size \(D = U - L + 1 \).

Amortization: Expanding Vectors

- When using array for expanding sequence, best to double size of array to grow it. Here's why.
- If array is size \(s \), doubling its size and moving \(s \) elements to the new array takes time \(\propto 2s \).
- Cost of inserting \(N \) items into array, doubling size as needed, starting with array size 1:

<table>
<thead>
<tr>
<th>To Insert</th>
<th>Resizing Cost</th>
<th>Cumulative Cost</th>
<th>Resizing Cost per Item</th>
<th>Array Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item #</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3 to 4</td>
<td>4</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>5 to 8</td>
<td>8</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
</tr>
<tr>
<td>(2^m + 1) to (2^{m+1})</td>
<td>(2m+1)</td>
<td>(2m^2 + 2)</td>
<td>(\approx 2)</td>
<td>(2^{m+1})</td>
</tr>
</tbody>
</table>

- If we spread out (amortize) the cost of resizing, we average about 2 time units on each item: “amortized insertion time is 2 units.”
- So even though worst-case time for adding one element to array of \(N \) elements is \(2N \), time to add \(N \) elements is \(\Theta(N) \), not \(\Theta(N^2) \).