Today:
 • Trees

Readings for Today: Data Structures, Chapter 5

Readings for Next Topic: Data Structures, Chapter 6
A Recursive Structure

- Trees naturally represent recursively defined, hierarchical objects with more than one recursive subpart for each instance.

- Common examples: expressions, sentences.
 - Expressions have definitions such as “an expression consists of a literal or two expressions separated by an operator.”

- Also describe structures in which we recursively divide a set into multiple subsets.
Fundamental Operation: Traversal

- **Traversing a tree** means enumerating (some subset of) its nodes.
- Typically done recursively, because that is natural description.
- As nodes are enumerated, we say they are **visited**.
- Three basic orders for enumeration (+ variations):
 - **Preorder**: visit node, traverse its children.
 - **Postorder**: traverse children, visit node.
 - **Inorder**: traverse first child, visit node, traverse second child (binary trees only).

```
  6
 /|
/  \
3   5

  0
 /|
/  \
2   4

  1
 /|
/  \
2   3

  4
 /|
/  \
1   5

  0
 /|
/  \
2   3
```

Postorder

Preorder

inorder
Preorder Traversal and Prefix Expressions

Problem: Convert

\[
\text{- } \quad (- (- (* x (+ y 3))) z)
\]

static String toLisp (Tree<String> T) {
 if (T == null)
 return "";
 else if (T.degree () == 0)
 return T.label ();
 else {
 String R; R = "";
 for (int i = 0; i < T.numChildren (); i += 1)
 R += " " + toLisp (T.child (i));
 return String.format ("(%s%s)", T.label (), R);
 }
}
Problem: Convert

\[-(x*(y+3))-z\]

To think about: how to get rid of all those parentheses.

```java
static String toInfix (Tree<String> T) {
    if (T == null)
        return "";
    if (T.degree () == 0)
        return T.label ();
    else {
        return String.format ("(\%s\%s\%s)",
                        toInfix (T.left ()), T.label (), toInfix (T.right ())
        );
    }
}
```
Problem: Convert

\[
\begin{array}{c}
- \\
\quad - \\
\quad \quad z \\
\quad \quad + \\
\quad \quad \quad x \\
\quad \quad \quad + \\
\quad \quad \quad \quad y \\
\quad \quad \quad \quad 3 \\
\end{array}
\Rightarrow x\ y\ 3\ +:2\ \cdot:2\ -:1\ z\ -:2
\]

```java
static String toPolish (Tree<String> T) {
    if (T == null)
        return "";
    else {
        String R; R = "";
        for (int i = 0; i < T.numChildren (); i += 1)
            R += toPolish (T.child (i)) + " ";
        return String.format ("%s%s:%d", R, T.label (), T.degree ());
    }
}
```
A General Traversal: The Visitor Pattern

void preorderTraverse (Tree<Label> T, Action<Label> whatToDo)
{
 if (T != null) {
 whatToDo.action (T);
 for (int i = 0; i < T.numChildren (); i += 1)
 preorderTraverse (T.child (i), whatToDo);
 }
}

• What is Action?

interface Action<Label> {
 void action (Tree<Label> T);
}

class Print implements Action<String> {
 void action (Tree<String> T) {
 System.out.print (T.label ());
 }
}

preorderTraverse (myTree, new Print());

The traversal algorithms have roughly the form of the *boom* example in §1.3.3 of *Data Structures*—an exponential algorithm.

However, the role of M in that algorithm is played by the *height* of the tree, not the number of nodes.

In fact, easy to see that tree traversal is *linear*: $\Theta(N)$, where N is the # of nodes: Form of the algorithm implies that there is one visit at the root, and then one visit for every *edge* in the tree. Since every node but the root has exactly one parent, and the root has none, must be $N - 1$ edges in any non-empty tree.

In positional tree, is also one recursive call for each empty tree, but # of empty trees can be no greater than kN, where k is arity.

For k-ary tree (max # children is k), $h + 1 \leq N \leq \frac{k^{h+1}-1}{k-1}$, where h is height.

So $h \in \Omega(\log_k N) = \Omega(\log N)$ and $h \in O(N)$.

Many tree algorithms look at one child only. For them, time is proportional to the *height* of the tree, and this is $\Theta(\log N)$, assuming that tree is *bushy*—each level has about as many nodes as possible.
Level-Order (Breadth-First) Traversal

Problem: Traverse all nodes at depth 0, then depth 1, etc:

```
       0
      / \
     1   2
    / \ / \   
   3  4 5  6
```

- One technique: Iterative Deepening. For each level, \(k \), from 0 to \(h \), call doLevel(T,k)

```java
void doLevel (Tree T, int lev) {
    if (lev == 0)
        visit T
    else
        for each non-null child, C, of T {
            doLevel (C, lev-1);
        }
}
```
Iterative Deepening Time?

- Let h be height, N be # of nodes.
- Count # edges traversed (i.e, # of calls, not counting null nodes).
- First (full) tree: 1 for level 0, 3 for level 1, 7 for level 2, 15 for level 3.
- Or in general $(2^1 - 1) + (2^2 - 1) + \ldots + (2^{h+1} - 1) = 2^{h+2} - h \in \Theta(N)$, since $N = 2^{h+1} - 1$ for this tree.
- Second (right leaning) tree: 1 for level 0, 2 for level 2, 3 for level 3.
- Or in general $(h+1)(h+2)/2 = N(N+1)/2 \in \Theta(N^2)$, since $N = h + 1$ for this kind of tree.
Iterative Traversals

- Tree recursion conceals data: a stack of nodes (all the T arguments) and a little extra information. Can make the data explicit, e.g.:

```java
void preorderTraverse2 (Tree T<T>, Action whatToDo) {
    Stack s = new Stack ();
    s.push (T);
    while (! s.isEmpty ()) {
        Tree node = (Tree) s.pop ();
        if (node == null)
            continue;
        whatToDo.action (node);
        for (int i = node.numChildren ()-1; i >= 0; i -= 1)
            s.push (node.child (i));
    }
}
```

- To do a breadth-first traversal, use a queue instead of a stack, replace push with add, and pop with removeFirst.

- Makes breadth-first traversal worst-case linear time in all cases, but also linear space for “bushy” trees.
Iterators for Trees

- Frankly, iterators are not terribly convenient on trees.
- But can use ideas from iterative methods.

```java
class PreorderTreeIterator<T> implements Iterator<T> {
    private Stack<Tree<T>> s = new Stack<Tree<T>>() {
    
    public PreorderTreeIterator (Tree<T> T) { s.push (T); }

    public boolean hasNext () { return ! s.isEmpty (); }
    public T next () {
        Tree<T> result = s.pop ();
        for (int i = result.numChildren ()-1; i >= 0; i -= 1)
            s.push (result.child (i));
        return result.label ();
    }
    }

    void remove () { throw new UnsupportedOperationException ( ); }
}

Example: (what do I have to add to class Tree first?)

    for (String label : aTree) System.out.print (label + " ");
```